Product datasheet

Anti-BMAL1 antibody ab93806

Product name: Anti-BMAL1 antibody
Description: Rabbit polyclonal to BMAL1
Host species: Rabbit
Tested applications: Suitable for: ICC/IF, WB, IP
Species reactivity: Reacts with: Mouse, Human
Predicted to work with: Rat, Sheep, Rabbit, Horse, Chicken, Guinea pig, Cow, Dog, Turkey, Pig, Xenopus laevis, Chimpanzee, Zebrafish, Rhesus monkey, Gorilla, Orangutan
Immunogen: Synthetic peptide, corresponding to a region within amino acids 575-625 of Human BMAL1 (NP_001025443.1)
Positive control: Purchase matching WB positive control: Recombinant Human BMAL1 protein
Form: Liquid
Storage instructions: Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.
Storage buffer: Preservative: 0.09% Sodium Azide
Constituents: Tris citrate/phosphate, pH 7-8
Purity: Immunogen affinity purified
Purification notes: ab93806 was affinity purified using an epitope specific to BMAL1 immobilized on solid support.
Clonality: Polyclonal
Isotype: IgG

Overview

Properties

Applications

Our Abpromise guarantee covers the use of ab93806 in the following tested applications.
The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
Function

Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK
NPAS2-ARNTL/BMAL1
ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. ARNTL/BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates

Target

Application	Abreviews	Notes
ICC/IF | | Use a concentration of 5 µg/ml.
IP | | Use a concentration of 2 - 5 µg/ml.
expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-ARNTL/BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina.

Tissue specificity

Hair follicles (at protein level). Highly expressed in the adult brain, skeletal muscle and heart.

Sequence similarities

Contains 1 bHLH (basic helix-loop-helix) domain.
Contains 1 PAC (PAS-associated C-terminal) domain.
Contains 2 PAS (PER-ARNT-SIM) domains.

Post-translational modifications

Ubiquitinated, leading to its proteasomal degradation.
O-glycosylated; contains O-GlcNAc. O-glycosylation by OGT prevents protein degradation by inhibiting ubiquitination. It also stabilizes the CLOCK-ARNTL/BMAL1 heterodimer thereby increasing CLOCK-ARNTL/BMAL1-mediated transcription of genes in the negative loop of the circadian clock such as PER1/2/3 and CRY1/2.
Acetylated on Lys-538 upon dimerization with CLOCK. Acetylation facilitates CRY1-mediated repression. Deacetylated by SIRT1, which may result in decreased protein stability.
Phosphorylated upon dimerization with CLOCK. Phosphorylation enhances the transcriptional activity, alters the subcellular localization and decreases the stability of the CLOCK-ARNTL/BMAL1 heterodimer by promoting its degradation. Phosphorylation shows circadian variations in the liver with a peak between CT10 to CT14. Phosphorylation at Ser-90 by CK2 is essential for its nuclear localization, its interaction with CLOCK and controls CLOCK nuclear entry.
Sumoylated on Lys-259 upon dimerization with CLOCK. Predominantly conjugated to poly-SUMO2/3 rather than SUMO1 and the level of these conjugates undergo rhythmic variation, peaking at CT9-CT12. Sumoylation localizes it exclusively to the PML body and promotes its ubiquitination in the PML body, ubiquitin-dependent proteasomal degradation and the transcriptional activity of the CLOCK-ARNTL/BMAL1 heterodimer.

Cellular localization

Nucleus. Cytoplasm. Nucleus, PML body. Shuttles between the nucleus and the cytoplasm and this nucleocytoplasmatic shuttling is essential for the nuclear accumulation of CLOCK, target gene transcription and the degradation of the CLOCK-ARNTL/BMAL1 heterodimer. The sumoylated form localizes in the PML body. Sequestered to the cytoplasm in the presence of ID2.

Images
Western blot - Anti-BMAL1 antibody (ab93806)

All lanes: Anti-BMAL1 antibody (ab93806) at 1/2000 dilution

Lane 1: HeLa lysate at 50 µg
Lane 2: HeLa lysate at 15 µg
Lane 3: HeLa lysate at 5 µg
Lane 4: 293T at 50 µg
Lane 5: NIH3T3 at 50 µg

Developed using the ECL technique.

Predicted band size: 69 kDa

Exposure time: 3 minutes

Immunocytochemistry/ Immunofluorescence - Anti-BMAL1 antibody (ab93806)

ICC/IF image of ab93806 stained MCF7 cells. The cells were 100% methanol fixed (5 min) and then incubated in 1%BSA / 10% normal goat serum / 0.3M glycine in 0.1% PBS-Tween for 1h to permeabilise the cells and block non-specific protein-protein interactions. The cells were then incubated with the antibody (ab93806, 5µg/ml) overnight at +4°C. The secondary antibody (green) was ab96899 Dylight 488 goat anti-rabbit IgG (H+L) used at a 1/250 dilution for 1h. Alexa Fluor® 594 WGA was used to label plasma membranes (red) at a 1/200 dilution for 1h. DAPI was used to stain the cell nuclei (blue) at a concentration of 1.43µM.
Ab93806 at 1 µg/ml detecting BMAL1 in HeLa whole cell lysate by WB following IP.
Lane 1: IP with an antibody which recognizes an upstream epitope of BMAL1
Lane 2: ab93806 at 3µg/mg of lysate
Lane 3: control IgG.
In each case, 1 mg of lysate was used for IP and 20% of the IP was loaded.
Detection: Chemiluminescence an with exposure time of 30 seconds

All lanes: 1 mg of lysate was used for IP and 20% of the IP was loaded

Lane 1: ab93805 at 3µg/mg of lysate
Lane 2: IP with an antibody which recognizes an downstream epitope of KAT13D/CLOCK
Lane 3: control IgG.

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit http://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors