Product datasheet

Anti-Lamin A antibody ab26300

Overview

Product name
Anti-Lamin A antibody

Description
Rabbit polyclonal to Lamin A

Host species
Rabbit

Tested applications
Suitable for: ICC/IF, WB

Species reactivity
Reacts with: Mouse, Rat, Human

Predicted to work with: Chicken, Pig 🔴

Immunogen
Synthetic peptide conjugated to KLH derived from within residues 550 to the C-terminus of Human Lamin A. Read Abcam's proprietary immunogen policy (Peptide available as ab27812.)

Positive control
ab26300 gave a positive result in the following Whole Cell Lysates A431 NIH 3T3 PC12 ICC-IF: Hela cells

Properties

Form
Liquid

Storage instructions
Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or -80°C. Avoid freeze / thaw cycle.

Storage buffer
Preservative: 0.02% Sodium Azide
Constituents: 1% BSA, PBS. pH 7.4

Purity
Immunogen affinity purified

Clonality
Polyclonal

Isotype
IgG

Applications

Our Abpromise guarantee covers the use of ab26300 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
Lamins are components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane, which is thought to provide a framework for the nuclear envelope and may also interact with chromatin. Lamin A and C are present in equal amounts in the lamina of mammals. Play an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics.

Prelamin-A/C can accelerate smooth muscle cell senescence. It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence.

In the arteries, prelamin-A/C accumulation is not observed in young healthy vessels but is prevalent in medial vascular smooth muscle cells (VSMCs) from aged individuals and in atherosclerotic lesions, where it often colocalizes with senescent and degenerate VSMCs. Prelamin-A/C expression increases with age and disease. In normal aging, the accumulation of prelamin-A/C is caused in part by the down-regulation of ZMPSTE24/FACE1 in response to oxidative stress.

Defects in LMNA are the cause of Emery-Dreifuss muscular dystrophy type 2 (EDMD2) [MIM:181350]. A degenerative myopathy characterized by weakness and atrophy of muscle without involvement of the nervous system, early contractures of the elbows, Achilles tendons and spine, and cardiomyopathy associated with cardiac conduction defects.

Defects in LMNA are the cause of cardiomyopathy dilated type 1A (CMD1A) [MIM:115200]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.

Defects in LMNA are the cause of familial partial lipodystrophy type 2 (FPLD2) [MIM:151660]; also known as familial partial lipodystrophy Dunnigan type. A disorder characterized by the loss of subcutaneous adipose tissue in the lower parts of the body (limbs, buttocks, trunk). It is accompanied by an accumulation of adipose tissue in the face and neck causing a double chin, fat neck, or cushingoid appearance. Adipose tissue may also accumulate in the axillae, back, labia majora, and intraabdominal region. Affected patients are insulin-resistant and may develop glucose intolerance and diabetes mellitus after age 20 years, hypertriglyceridemia, and low levels of high density lipoprotein cholesterol.

Defects in LMNA are the cause of limb-girdle muscular dystrophy type 1B (LGMD1B) [MIM:159001]. LGMD1B is an autosomal dominant degenerative myopathy with age-related atrophicventricular cardiac conduction disturbances, dilated cardiomyopathy, and the absence of early contractures. LGMD1B is characterized by slowly progressive skeletal muscle weakness of the hip and shoulder girdles. Muscle biopsy shows mild dystrophic changes.

Defects in LMNA are the cause of Charcot-Marie-Tooth disease type 2B1 (CMT2B1) [MIM:605588]. CMT2B1 is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathy or CMT1, and primary peripheral axonal neuropathy or CMT2.
CMT2. Neuropathies of the CMT2 group are characterized by signs of axonal regeneration in the absence of obvious myelin alterations, normal or slightly reduced nerve conduction velocities, and progressive distal muscle weakness and atrophy. CMT2B1 inheritance is autosomal recessive.

Defects in LMNA are the cause of Hutchinson-Gilford progeria syndrome (HGPS) [MIM:176670]. HGPS is a rare genetic disorder characterized by features reminiscent of marked premature aging. Note=HGPS is caused by the toxic accumulation of a mutant form of lamin-A/C. This mutant protein, called progerin, acts to deregulate mitosis and DNA damage signaling, leading to premature cell death and senescence. Progerin lacks the conserved ZMPSTE24/FACE1 cleavage site and therefore remains permanently farnesylated. Thus, although it can enter the nucleus and associate with the nuclear envelope, it cannot incorporate normally into the nuclear lamina.

Defects in LMNA are the cause of cardiomyopathy dilated with hypergonadotropic hypogonadism (CMDHH) [MIM:212112]. A disorder characterized by the association of genital anomalies, hypergonadotropic hypogonadism and dilated cardiomyopathy. Patients can present other variable clinical manifestations including mental retardation, skeletal anomalies, scleroderma-like skin, graying and thinning of hair, osteoporosis. Dilated cardiomyopathy is characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia.

Defects in LMNA are the cause of mandibuloacral dysplasia with type A lipodystrophy (MADA) [MIM:248370]. A disorder characterized by mandibular and clavicular hypoplasia, acroosteolysis, delayed closure of the cranial suture, progeroid appearance, partial alopecia, soft tissue calcinosis, joint contractures, and partial lipodystrophy with loss of subcutaneous fat from the extremities. Adipose tissue in the face, neck and trunk is normal or increased.

Defects in LMNA are a cause of lethal tight skin contracture syndrome (LTSCS) [MIM:275210]; also known as restrictive dempopathy (RD). Lethal tight skin contracture syndrome is a rare disorder mainly characterized by intrauterine growth retardation, tight and rigid skin with erosions, prominent superficial vasculature and epidermal hyperkeratosis, facial features (small mouth, small pinched nose and micrognathia), sparse/absent eyelashes and eyebrows, mineralization defects of the skull, thin dysplastic clavicles, pulmonary hypoplasia, multiple joint contractures and an early neonatal lethal course. Liveborn children usually die within the first week of life. The overall prevalence of consanguineous cases suggested an autosomal recessive inheritance.

Defects in LMNA are the cause of heart-hand syndrome Slovenian type (HHS-Slovenian) [MIM:610140]. Heart-hand syndrome (HHS) is a clinically and genetically heterogeneous disorder characterized by the co-occurrence of a congenital cardiac disease and limb malformations.

Defects in LMNA are the cause of muscular dystrophy congenital LMNA-related (CMD-LMNA) [MIM:613205]. It is a form of congenital muscular dystrophy. Patients present at birth, or within the first few months of life, with hypotonia, muscle weakness and often with joint contractures.

Sequence similarities
Belongs to the intermediate filament family.

Post-translational modifications
Increased phosphorylation of the lamins occurs before envelope disintegration and probably plays a role in regulating lamin associations.

Proteolytic cleavage of the C-terminal of 18 residues of prelamin-A/C results in the production of lamin-A/C. The prelamin-A/C maturation pathway includes farnesylation of CAAX motif, ZMPSTE24/FACE1 mediated cleavage of the last three amino acids, methylation of the C-terminal cysteine and endoproteolytic removal of the last 15 C-terminal amino acids. Proteolytic cleavage requires prior farnesylation and methylation, and absence of these blocks cleavage. Sumoylation is necessary for the localization to the nuclear envelope.

Farnesylation of prelamin-A/C facilitates nuclear envelope targeting.
and subsequent cleavage by ZMPSTE24/FACE1 to remove the farnesyl group produces mature lamin-A/C, which can then be inserted into the nuclear lamina. EMD is required for proper localization of non-farnesylated prelamin-A/C.

Images

Lane 1: Wild-type HAP1 cell lysate (20 µg)
Lane 2: Lamin A knockout HAP1 cell lysate (20 µg)
Lane 3: A431 cell lysate (20 µg)
Lane 4: NIH3T3 cell lysate (20 µg)

Lanes 1 - 4: Merged signal (red and green). Green - ab26300 observed at 76 kDa. Red - loading control, ab8245, observed at 37 kDa.

ab26300 was shown to recognize Lamin A in wild-type HAP1 cells along with additional cross-reactive bands. No band was observed when Lamin A knockout samples were examined. Wild-type and Lamin A knockout samples were subjected to SDS-PAGE. ab26300 1µg/ml and ab8245 (loading control to GAPDH) at a dilution of 1/1000 were incubated overnight at 4°C. Blots were developed with Goat anti-Rabbit IgG H&L (IRDye® 800CW) preadsorbed (ab216773) and Goat anti-Mouse IgG H&L (IRDye® 680RD) preadsorbed (ab216776) secondary antibodies at 1/10,000 dilution for 1 hour at room temperature before imaging.
Immunocytochemistry/ Immunofluorescence - Anti-Lamin A antibody (ab26300) stained in Hela cells. Cells were fixed with 100% methanol (5 min) at room temperature and incubated with PBS containing 10% goat serum, 0.3 M glycine, 1% BSA and 0.1% Triton for 1 h at room temperature to permeabilise the cells and block non-specific protein-protein interactions. The cells were then incubated with the antibody ab26300 at 1 µg/ml and ab7291 (Mouse monoclonal [DM1A] to alpha Tubulin - Loading Control) at 1/1000 dilution overnight at +4°C. The secondary antibodies were ab150120 (pseudo-colored red) and ab150081 (colored green) used at 1 ug/ml for 1 hour at room temperature. DAPI was used to stain the cell nuclei (colored blue) at a concentration of 1.43µM for 1 hour at room temperature.

Immunocytochemistry/ Immunofluorescence analysis of hESCs labeling Lamin A with ab26300 at 1/500 dilution. Samples were fixed with 3.7% paraformaldehyde for 1 hour, and stained for nuclear DNA (DAPI), filamentous actin, tumor recognition antigen 1–81, and nuclear envelope protein Lamin A. For staining, cells were permeabilized with 0.1% Triton X-100 for 10 min. Goat serum, 10%, in phosphate-buffered saline was used to block nonspecific binding for 20 min.

ab26300 (1/2000) staining Lamin A in asynchronous HeLa Cells, by Immunocytochemistry/ Immunofluorescence. Secondary antibody: goat anti-rabbit conjugated to Cy3 ® (1/200). Cells counterstained with DAPI in order to highlight the nucleus.
Anti-Lamin A antibody (ab26300) at 1/1000 dilution + HeLa whole cell extract at 100 µg

Secondary
Goat anti-Rabbit IgG (H+L) HRP Conjugate at 1/10000 dilution

Developed using the ECL technique.

Predicted band size: 74 kDa
Observed band size: 76 kDa

Exposure time: 15 seconds

Blocking: 5% milk for 30 minutes at 22°C

Immunocytochemistry/ Immunofluorescence analysis of human vascular smooth muscle cell labeling Lamin A with ab26300 at 1/200 dilution. Cells were fixed in formaldehyde and permeabilized with np40. Cells were blocked with 3% BSA for 1 hour at 21°C. A polyclonal donkey anti-rabbit Alexa Fluor® 568 conjugated secondary antibody was used at 1/500 dilution.
All lanes: Anti-Lamin A antibody (ab26300) at 1/1000 dilution

Lane 1: Mouse NIH-3T3 cells - cytosolic fraction
Lane 2: Mouse NIH-3T3 cells - nuclear fraction

Lysates/proteins at 25 µg per lane.

Secondary
All lanes: HRP conjugated Goat anti-rabbit at 1/5000 dilution

Developed using the ECL technique.

Performed under reducing conditions.

Predicted band size: 74 kDa
Observed band size: 76 kDa

Exposure time: 10 seconds

Immunocytochemistry/Immunofluorescence analysis of Human Lung Fibroblasts labeling Lamin A with ab26300 at 1/500 dilution. Samples were fixed with 3.7% paraformaldehyde for 1 hour, and stained for nuclear DNA (DAPI), filamentous actin, tumor recognition antigen 1–81, and nuclear envelope protein Lamin A. For staining, cells were permeabilized with 0.1% Triton X-100 for 10 min. Goat serum, 10%, in phosphate-buffered saline was used to block nonspecific binding for 20 min.
Western blot - Lamin A antibody (ab26300)

Anti-Lamin A antibody (ab26300) at 1 µg/ml + A431 whole cell lysate (ab7909) at 20 µg

Secondary
IRDye 680 Conjugated Goat Anti-Rabbit IgG (H+L) at 1/15000 dilution

Performed under reducing conditions.

Predicted band size: 74 kDa

Observed band size: 76 kDa

Additional bands at: 68 kDa (possible degradation product)

Western blot - Lamin A antibody (ab26300)

All lanes: Anti-Lamin A antibody (ab26300) at 1 µg/ml

Lane 1: Recombinant Human Lamin A protein (ab83472) at 0.1 µg

Lane 2: Recombinant Human Lamin A protein (ab83472) at 0.01 µg

Secondary
All lanes: Goat Anti-Rabbit IgG H&L (HRP) preadsorbed (ab97080) at 1/5000 dilution

Developed using the ECL technique.

Performed under reducing conditions.

Predicted band size: 74 kDa

Exposure time: 10 seconds
ab26300 at 1/1000 staining human HeLa cells by ICC/IF. The cells were paraformaldehyde fixed, permeabilized with Triton X100 and blocked with BSA before incubation with the antibody. A Cy3® conjugated donkey anti-rabbit IgG was used as the secondary.

Immunocytochemistry/ Immunofluorescence - Lamin A antibody (ab26300)

This image is courtesy of an Abreview submitted by Dr Chi W Tang

Western blot - Lamin A antibody (ab26300)

All lanes: Anti-Lamin A antibody (ab26300) at 1 µg/ml

Lane 1: NIH 3T3 whole cell lysate (ab7179)

Lane 2: PC12 (Rat adrenal pheochromocytoma cell line) Whole Cell Lysate

Lysates/proteins at 10 µg per lane.

Secondary

All lanes: IRDye 680 Conjugated Goat Anti-Rabbit IgG (H+L) at 1/10000 dilution

Performed under reducing conditions.

Predicted band size: 74 kDa

Observed band size: 74 kDa

Additional bands at: 100 kDa, 45 kDa, 70 kDa (possible degradation product). We are unsure as to the identity of these extra bands.

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
Valid for 12 months from date of delivery
Response to your inquiry within 24 hours

We provide support in Chinese, English, French, German, Japanese and Spanish
Extensive multi-media technical resources to help you
We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit http://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

Guarantee only valid for products bought direct from Abcam or one of our authorized distributors