Overview

  • Product nameAnti-FGFR3 antibody
    See all FGFR3 primary antibodies
  • Description
    Rabbit polyclonal to FGFR3
  • SpecificityNo reaction with human FGFR1 and FGFR2 is detected.
  • Tested applicationsSuitable for: WB, IP, IHC-Pmore details
  • Species reactivity
    Reacts with: Human
  • Immunogen

    Synthetic peptide:

    AEEELVEADEAGSVK

    conjugated with glutaraldehyde to KLH, corresponding to amino acids 359-372 of Human FGFR3 with a C-terminal.

  • Positive control
    • Whole cell lysate of 293T cells transfected with the FGFR3 full length gene.
  • General notes


    Fibroblast growth factors (FGFs) are members of a large family of structurally related polypeptides (MW 17-38 kD) that are potent physiological regulators of growth and differentiation for a wide variety of cells of mesodermal, ectodermal and endodermal origin. FGFs are substantially involved in normal development, wound healing and repair, angiogenesis, a variety of neurotrophic activities, and in hematopoiesis as well as in tissue remodelling and maintenance. They have also been implicated in pathological conditions such as tumorigenesis and metastasis. The FGF family consists of at least seventeen members designated FGF1 through FGF17. To date, four genes encoding for high affinity cell surface FGF receptors (FGFRs) have been identified: FGFR1 [flg-1(fms-like gene 1)]; FGFR2 [bek (bacterial expressed kinase gene product)]; FGFR3 (cek-2) and by alternative splicing have been reported. Soluble, secreted or possibly cleaved forms of FGFR-1 and FGFR-2 have also been found in body fluids or were artificially constructed. An example is a soluble FGF-binding protein containing the extracellular region of FGFR3 and the secreted form of placental alkaline phosphatase (FRAP3). FGFRs are members of the tyrosine kinase family of growth factor receptors. They are glycosylated 110-150 kD proteins consiting of an extracellular domain, a single transmembrane region and a cytoplasmic split tyrosine kinase domain, which is activated following ligand binding and receptor dimerization. The extracellular, ligand binding, region is constructed with either two (beta type) or typically three (alpha-type) immunoglobulin (Ig)-like domains, and an eight amino acid ‘acidic box’. The ligand binding site of all FGFRs is confined to the extracellular Ig-like domains 2 and 3. FGFRs exhibit overlapping recognition and redundant specificity. One receptor type may bind several of the FGFs with a similar affinity. Also, one FGF type may bind similarly to several distinct receptors. This accounts for the rather identical effects of different FGF ligands on common cell types. FGFs binding to cellular FGFRs depend on, or is markedly facilitated by the low-affinity interaction of FGFs with the polysaccharide component of cell surface or extracellular matrix heparan sulfate proteoglycans (HSPG). Signal transduction by FGFRs requires dimerization or oligomerization and autophosphorylation of the receptors through their tyrosine kinase domain. Subsequent association with cytoplasmic signalling molecules leads to DNA synthesis or differentiation. The signalling and biological responses elicited by distinct FGFRs substantially differ and are dictated by the intracellular domain. FGFR3 is widely expressed in many fetal and adult human and animal tissues. The FGFR3 expression profile largely correlates with its tissue specific expression at the mRNA level.

Properties

  • FormLiquid
  • Storage instructionsShipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw cycles.
  • Storage bufferPreservative: 15mM Sodium Azide
    Constituents: 1% BSA, 10mM Sodium Phosphate
  • Concentration information loading...
  • PurityImmunogen affinity purified
  • Purification notesThe product is affinity purified on an immunizing peptide-agarose column.
  • Primary antibody notesFibroblast growth factors (FGFs) are members of a large family of structurally related polypeptides (MW 17-38 kD) that are potent physiological regulators of growth and differentiation for a wide variety of cells of mesodermal, ectodermal and endodermal origin. FGFs are substantially involved in normal development, wound healing and repair, angiogenesis, a variety of neurotrophic activities, and in hematopoiesis as well as in tissue remodelling and maintenance. They have also been implicated in pathological conditions such as tumorigenesis and metastasis. The FGF family consists of at least seventeen members designated FGF1 through FGF17. To date, four genes encoding for high affinity cell surface FGF receptors (FGFRs) have been identified: FGFR1 [flg-1(fms-like gene 1)]; FGFR2 [bek (bacterial expressed kinase gene product)]; FGFR3 (cek-2) and by alternative splicing have been reported. Soluble, secreted or possibly cleaved forms of FGFR-1 and FGFR-2 have also been found in body fluids or were artificially constructed. An example is a soluble FGF-binding protein containing the extracellular region of FGFR3 and the secreted form of placental alkaline phosphatase (FRAP3). FGFRs are members of the tyrosine kinase family of growth factor receptors. They are glycosylated 110-150 kD proteins consiting of an extracellular domain, a single transmembrane region and a cytoplasmic split tyrosine kinase domain, which is activated following ligand binding and receptor dimerization. The extracellular, ligand binding, region is constructed with either two (beta type) or typically three (alpha-type) immunoglobulin (Ig)-like domains, and an eight amino acid ‘acidic box’. The ligand binding site of all FGFRs is confined to the extracellular Ig-like domains 2 and 3. FGFRs exhibit overlapping recognition and redundant specificity. One receptor type may bind several of the FGFs with a similar affinity. Also, one FGF type may bind similarly to several distinct receptors. This accounts for the rather identical effects of different FGF ligands on common cell types. FGFs binding to cellular FGFRs depend on, or is markedly facilitated by the low-affinity interaction of FGFs with the polysaccharide component of cell surface or extracellular matrix heparan sulfate proteoglycans (HSPG). Signal transduction by FGFRs requires dimerization or oligomerization and autophosphorylation of the receptors through their tyrosine kinase domain. Subsequent association with cytoplasmic signalling molecules leads to DNA synthesis or differentiation. The signalling and biological responses elicited by distinct FGFRs substantially differ and are dictated by the intracellular domain. FGFR3 is widely expressed in many fetal and adult human and animal tissues. The FGFR3 expression profile largely correlates with its tissue specific expression at the mRNA level.
  • ClonalityPolyclonal
  • IsotypeIgG
  • Research areas

Applications

Our Abpromise guarantee covers the use of ab10651 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application Abreviews Notes
WB 1/500. Detects a band of approximately 110, 120 kDa.
IP 1/500.
IHC-P 1/1000.

Target

  • FunctionReceptor for acidic and basic fibroblast growth factors. Preferentially binds FGF1.
  • Tissue specificityExpressed in brain, kidney and testis. Very low or no expression in spleen, heart, and muscle. In 20- to 22-week old fetuses it is expressed at high level in kidney, lung, small intestine and brain, and to a lower degree in spleen, liver, and muscle. Isoform 2 is detected in epithelial cells. Isoform 1 is not detected in epithelial cells. Isoform 1 and isoform 2 are detected in fibroblastic cells.
  • Involvement in diseaseDefects in FGFR3 are the cause of achondroplasia (ACH) [MIM:100800]. ACH is an autosomal dominant disease and is the most frequent form of short-limb dwarfism. It is characterized by a long, narrow trunk, short extremities, particularly in the proximal (rhizomelic) segments, a large head with frontal bossing, hypoplasia of the midface and a trident configuration of the hands.
    Defects in FGFR3 are the cause of Crouzon syndrome with acanthosis nigricans (CAN) [MIM:612247]. Classic Crouzon disease which is caused by mutations in the FGFR2 gene is characterized by craniosynostosis (premature fusion of the skull sutures), and facial hypoplasia. Crouzon syndrome with acanthosis nigricans (a skin disorder characterized by pigmentation anomalies), CAN, is considered to be an independent disorder from classic Crouzon syndrome. CAN is characterized by additional more severe physical manifestation, such as Chiari malformation, hydrocephalus, and atresia or stenosis of the choanas, and is caused by a specific mutation (Ala-391 to Glu) in the transmembrane domain of FGFR3. It is proposed to have an autosomal dominant mode of inheritance.
    Defects in FGFR3 are a cause of thanatophoric dysplasia type (TD) [MIM:187600, 187601]; also known as thanatophoric dwarfism or platyspondylic lethal skeletal dysplasia Sand Diego type (PLSD-SD). TD is the most common neonatal lethal skeletal dysplasia. Affected individuals display features similar to those seen in homozygous achondroplasia. It causes severe shortening of the limbs with macrocephaly, narrow thorax and short ribs. In the most common subtype, TD1, femur are curved, while in TD2, straight femurs are associated with cloverleaf skull. Mutations affecting different functional domains of FGFR3 cause different forms of this lethal disorder.
    Defects in FGFR3 are a cause of hypochondroplasia (HCH) [MIM:146000]. HCH is an autosomal dominant disease and is characterized by disproportionate short stature. It resembles achondroplasia, but with a less severe phenotype.
    Defects in FGFR3 are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Somatic mutations can constitutively activate FGFR3.
    Defects in FGFR3 are a cause of cervical cancer (CERCA) [MIM:603956]. A malignant neoplasm of the cervix, typically originating from a dysplastic or premalignant lesion previously present at the active squamocolumnar junction. The transformation from mild dysplastic to invasive carcinoma generally occurs slowly within several years, although the rate of this process varies widely. Carcinoma in situ is particularly known to precede invasive cervical cancer in most cases. Cervical cancer is strongly associated with infection by oncogenic types of human papillomavirus.
    Defects in FGFR3 are the cause of camptodactyly tall stature and hearing loss syndrome (CATSHL syndrome) [MIM:610474]. CATSHL syndrome is an autosomal dominant syndrome characterized by permanent and irreducible flexion of one or more fingers of the hand and/or feet, tall stature, scoliosis and/or a pectus excavatum, and hearing loss. Affected individuals have developmental delay and/or mental retardation, and several of these have microcephaly. Radiographic findings included tall vertebral bodies with irregular borders and broad femoral metaphyses with long tubular shafts. On audiological exam, each tested member have bilateral sensorineural hearing loss and absent otoacoustic emissions. The hearing loss was congenital or developed in early infancy, progressed variably in early childhood, and range from mild to severe. Computed tomography and magnetic resonance imaging reveal that the brain, middle ear, and inner ear are structurally normal.
    Defects in FGFR3 are a cause of multiple myeloma (MM) [MIM:254500]. MM is a malignant tumor of plasma cells usually arising in the bone marrow and characterized by diffuse involvement of the skeletal system, hyperglobulinemia, Bence-Jones proteinuria and anemia. Complications of multiple myeloma are bone pain, hypercalcemia, renal failure and spinal cord compression. The aberrant antibodies that are produced lead to impaired humoral immunity and patients have a high prevalence of infection. Amyloidosis may develop in some patients. Multiple myeloma is part of a spectrum of diseases ranging from monoclonal gammopathy of unknown significance (MGUS) to plasma cell leukemia. Note=A chromosomal aberration involving FGFR3 is found in multiple myeloma. Translocation t(4;14)(p16.3;q32.3) with the IgH locus.
    Defects in FGFR3 are a cause of lacrimo-auriculo-dento-digital syndrome (LADDS) [MIM:149730]; also known as Levy-Hollister syndrome. LADDS is a form of ectodermal dysplasia, a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. LADDS is an autosomal dominant syndrome characterized by aplastic/hypoplastic lacrimal and salivary glands and ducts, cup-shaped ears, hearing loss, hypodontia and enamel hypoplasia, and distal limb segments anomalies. In addition to these cardinal features, facial dysmorphism, malformations of the kidney and respiratory system and abnormal genitalia have been reported. Craniosynostosis and severe syndactyly are not observed.
    Defects in FGFR3 are a cause of keratinocytic non-epidermolytic nevus (KNEN) [MIM:162900]; also known as pigmented moles. Epidermal nevi of the common, non-organoid and non-epidermolytic type are benign skin lesions and may vary in their extent from a single (usually linear) lesion to widespread and systematized involvement. They may be present at birth or develop early during childhood.
    Defects in FGFR3 are a cause of Muenke syndrome (MNKS) [MIM:602849]; also known as Muenke non-syndromic coronal craniosynostosis. MNKS is a condition characterized by premature closure of coronal suture of skull during development (coronal craniosynostosis), which affects the shape of the head and face. It may be uni- or bilateral. When bilateral, it is characterized by a skull with a small antero-posterior diameter (brachycephaly), often with a decrease in the depth of the orbits and hypoplasia of the maxillae. Unilateral closure of the coronal sutures leads to flattening of the orbit on the involved side (plagiocephaly). The intellect is normal. In addition to coronal craniosynostosis some affected individuals show skeletal abnormalities of hands and feet, sensorineural hearing loss, mental retardation and respiratory insufficiency.
    Defects in FGFR3 are a cause of keratosis seborrheic (KERSEB) [MIM:182000]. A common benign skin tumor. Seborrheic keratoses usually begin with the appearance of one or more sharply defined, light brown, flat macules. The lesions may be sparse or numerous. As they initially grow, they develop a velvety to finely verrucous surface, followed by an uneven warty surface with multiple plugged follicles and a dull or lackluster appearance.
  • Sequence similaritiesBelongs to the protein kinase superfamily. Tyr protein kinase family. Fibroblast growth factor receptor subfamily.
    Contains 3 Ig-like C2-type (immunoglobulin-like) domains.
    Contains 1 protein kinase domain.
  • Cellular localizationMembrane.
  • Information by UniProt
  • Database links
  • Alternative names
    • ACH antibody
    • CD 333 antibody
    • CD333 antibody
    • CD333 antigen antibody
    • CEK 2 antibody
    • CEK2 antibody
    • FGFR 3 antibody
    • FGFR-3 antibody
    • FGFR3 antibody
    • FGFR3_HUMAN antibody
    • Fibroblast growth factor receptor 3 (achondroplasia thanatophoric dwarfism) antibody
    • Fibroblast growth factor receptor 3 antibody
    • Heparin binding growth factor receptor antibody
    • HSFGFR3EX antibody
    • Hydroxyaryl protein kinase antibody
    • JTK 4 antibody
    • JTK4 antibody
    • MFR 3 antibody
    • SAM 3 antibody
    • Tyrosine kinase JTK 4 antibody
    • Tyrosine kinase JTK4 antibody
    • Z FGFR 3 antibody
    see all

References for Anti-FGFR3 antibody (ab10651)

This product has been referenced in:
  • Page RL  et al. Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning Stem Cells 11:417-26 (2009). ICC/IF ; Human . Read more (PubMed: 19622035) »
  • Terry J  et al. Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models. Clin Cancer Res 11:5631-8 (2005). Read more (PubMed: 16061882) »

See all 2 Publications for this product

Product Wall

Application Flow Cytometry
Sample Human Cell (Differentiated hNSCs)
Permeabilization Yes - 0.25% Triton X-100 in DPBS
Gating Strategy Undifferentiated Stem Cells
Specification Differentiated hNSCs
Preparation Cell harvesting/tissue preparation method: Accutase
Sample buffer: PBS
Fixation Paraformaldehyde
Username

Abcam user community

Verified customer

Submitted Sep 29 2015

Thank youfor your call today andfor your interest in ab10651.

Since ab10651 has not been tested with dog samples, I can offer a discount off a future purchase if you buy ab10651 now, test itwith dog samples,and submit feedback to us in the f...

Read More

Thank you for your enquiry and your interest.

I can confirm that ab53636 has been manufactured and designed as a prediluted (ready to use) antibody for Immunohistochemistry.

We have several alternative antibodies against the same ta...

Read More
Abcam guarantees this product to work in the species/application used in this Abreview.
Application Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections)
Sample Human Tissue sections (Normal tissue array)
Specification Normal tissue array
Fixative Formaldehyde
Antigen retrieval step Heat mediated - Buffer/Enzyme Used: Citrate
Permeabilization No
Blocking step (agent) for 10 minute(s) · Concentration: 100%
Username

Abcam user community

Verified customer

Submitted Mar 10 2009

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"