abcam

Product datasheet

Anti-CD81 antibody [1D6] ab23505

KO VALIDATED

1 Abreviews 13 References 1 Image

Overview

Product name Anti-CD81 antibody [1D6]

Description Mouse monoclonal [1D6] to CD81

Host species Mouse

Specificity ab23505 recognises human CD81, a 26kD cell surface antigen also known as TAPA-1, and a

member of the tetraspanin family.

Tested applications Suitable for: Flow Cyt

Unsuitable for: WB

Species reactivity Reacts with: Human

Predicted to work with: Sheep, Goat, Chimpanzee

Immunogen Tissue, cells or virus corresponding to Human CD81. Aggregated OCI-LY8 cells (Human).

Positive control Flow Cyt: HAP1-WT cells.

General notes

This antibody induces homotypic adhesion and has powerful anti proliferative effects.

The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C long

term.

Storage buffer pH: 7.40

Preservative: 0.09% Sodium azide

Constituent: PBS

1

Purity Protein G purified

Primary antibody notesThis antibody induces homotypic adhesion and has powerful anti proliferative effects.

Clonality Monoclonal

Clone number 1D6

Myeloma P3x63-Ag8.653

Isotype IgG1

Applications

The Abpromise guarantee Our Abpromise guarantee covers the use of ab23505 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
Flow Cyt		1/5 - 1/10. ab170190 - Mouse monoclonal lgG1, is suitable for use as an isotype control with this antibody.

Application notes Is unsuitable for WB.

Target

Function May play an important role in the regulation of lymphoma cell growth. Interacts with a 16-kDa Leu-

13 protein to form a complex possibly involved in signal transduction. May acts a the viral receptor

for HCV.

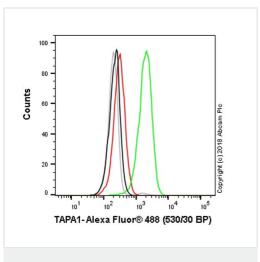
Tissue specificity Hematolymphoid, neuroectodermal and mesenchymal tumor cell lines.

Involvement in disease Defects in CD81 are the cause of immunodeficiency common variable type 6 (CVID6)

[MIM:613496]; also called antibody deficiency due to CD81 defect. CVID6 is a primary immunodeficiency characterized by antibody deficiency, hypogammaglobulinemia, recurrent bacterial infections and an inability to mount an antibody response to antigen. The defect results from a failure of B-cell differentiation and impaired secretion of immunoglobulins; the numbers of

circulating B cells is usually in the normal range, but can be low.

Sequence similaritiesBelongs to the tetraspanin (TM4SF) family.


Post-translational

modifications

Not glycosylated.

Cellular localization Membrane.

Images

Flow Cytometry - Anti-CD81 antibody [1D6] (ab23505)

Overlay histogram showing HAP1 wildtype (green line) and HAP1-CD81 knockout cells (red line) stained with ab23505. The cells were fixed with 4% formaldehyde (10 min) and then permeabilized with 0.1% PBS-Triton X-100 for 15 min. The cells were then incubated in 1x PBS / 10% normal goat serum to block non-specific protein-protein interactions followed by the antibody (ab23505, 0.1µg/ml) for 30 min at 22°C. The secondary antibody used was Alexa Fluor® 488 goat anti-mouse lgG (H&L) presorbed (ab150117) at 1/2000 dilution for 30 min at 22°C.

A mouse IgG1 isotype control antibody (ab170190) was used at the same concentration and conditions as the primary antibody (HAP1 wildtype - black line, HAP1-CD81 knockout - grey line). Unlabelled sample was also used as a control (this line is not shown for the purpose of simplicity).

Acquisition of >5,000 events were collected using a 50 mW Blue laser (488nm) and 530/30 bandpass filter.

This antibody can also be used in HAP1 cells fixed with 80% methanol (5 min), permeabilized with 0.1% PBS-Triton X-100 for 15 min under the same conditions.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				