abcam

Product datasheet

Anti-DCK antibody [OTI16E12] ab118994

4 Images

Overview

Product name Anti-DCK antibody [OTI16E12]

Description Mouse monoclonal [OTI16E12] to DCK

Host species Mouse

Tested applications Suitable for: Flow Cyt (Intra), WB

Species reactivity Reacts with: Human

Immunogen Recombinant full length protein corresponding to Human DCK aa 1-300. (NP_000779) produced

in HEK293T cells.

Database link: P27707

Run BLAST with
Run BLAST with

Positive control WB: HEK293T cells transfected with pCMV6-ENTRY DCK. Flow Cyt (Intra): HEK-293T

transfected with DCK, HeLa and Jurkat cells.

General notesThe clone number has been updated from 16E12 to OTI16E12, both clone numbers name the

same clone.

The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C.

Avoid freeze / thaw cycle.

Storage buffer pH: 7.30

Preservative: 0.02% Sodium azide

Constituents: PBS, 1% BSA, 50% Glycerol

Purity Affinity purified

Purification notes Purified from cell culture supernatant by affinity chromatography

1

ClonalityMonoclonalClone numberOTI16E12IsotypeIgG1

Applications

The Abpromise guarantee Our **Abpromise guarantee** covers the use of ab118994 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes		
Flow Cyt (Intra)		1/100. ab170190 - Mouse monoclonal lgG1, is suitable for use as an isotype control with this antibody.		
WB		1/2000. Predicted molecular weight: 31 kDa.		

Target

Function	Required for the	phosphoryla	ation of the deox	ribonucleosides deox	(vcvtidine (dC),

deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the $\frac{1}{2}$

phosphorylation of numerous nucleoside analogs widely employed as antiviral and

chemotherapeutic agents.

Sequence similarities Belongs to the DCK/DGK family.

Post-translational

modifications

Phosphorylated upon DNA damage, probably by ATM or ATR.

Cellular localization Nucleus.

Images

All lanes : Anti-DCK antibody [OTI16E12] (ab118994) at 1/2000 dilution

Lane 1 : HEK-293T (human epithelial cell line from embryonic kidney transformed with large T antigen) cell lysate transfected with pCMV6-ENTRY control

Lane 2: HEK-293T cells transfected with pCMV6-ENTRY DCK cDNA

Lysates/proteins at 5 µg per lane.

Predicted band size: 31 kDa

Flow Cytometry (Intracellular) - Anti-DCK antibody [OTI16E12] (ab118994)

Flow cytometric analysis of HEK-293T (human epithelial cell line from embryonic kidney transformed with large T antigen) cells transfected with either DCK overexpress plasmid (Red) or empty vector control plasmid (Blue) were stained for DCK using ab118994 at 1/100 dilution.

Flow Cytometry (Intracellular) - Anti-DCK antibody [OTI16E12] (ab118994)

Flow cytometric analysis of HeLa (human epithelial cell line from cervix adenocarcinoma) cells stained for DCK using ab118994 (Red) compared to a nonspecific negative control antibody (Blue).

Flow cytometric analysis of Jurkat (human T cell leukemia cell line from peripheral blood) cells using ab118994 at 1/100 (Red), compared to a nonspecific negative control antibody (Blue).

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors							