abcam

Product datasheet

Anti-HIPPI/IFT57 antibody ab154601

3 Images

Overview

Product name Anti-HIPPI/IFT57 antibody

Description Rabbit polyclonal to HIPPI/IFT57

Host species Rabbit

Tested applications Suitable for: WB, IHC-P, ICC/IF

Species reactivity Reacts with: Human

Predicted to work with: Mouse, Rat, Cow

, ,

Immunogen Recombinant fragment corresponding to Human HIPPI/IFT57 aa 227-429.

Database link: **Q9NWB7**

Positive control 293T, A431, H1299, HeLa, HepG2 and Raji whole cell lysates. HeLa cells.

General notes Keep as concentrated solution.

The Life Science industry has been in the grips of a reproducibility crisis for a number of years. Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Upon delivery aliquot. Store at -20°C or -80°C. Avoid freeze / thaw cycle.

Storage buffer pH: 7.00

Preservative: 0.01% Thimerosal (merthiolate)

Constituents: 1.21% Tris, 0.75% Glycine, 10% Glycerol (glycerin, glycerine)

Purity Immunogen affinity purified

Clonality Polyclonal

Isotype IgG

Annlications

1

The Abpromise guarantee

Our Abpromise guarantee covers the use of ab154601 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
WB		1/500 - 1/3000. Predicted molecular weight: 49 kDa.
IHC-P		1/100 - 1/1000. Perform heat mediated antigen retrieval before commencing with IHC staining protocol using 10mM Citrate buffer (pH6.0) or Tris-EDTA buffer (pH8.0).
ICC/IF		1/100 - 1/1000.

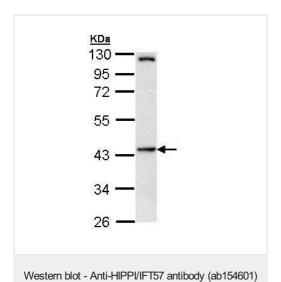
Target

Function Required for the formation of cilia. Plays an indirect role in sonic hedgehog signaling, cilia being	Function	Required for the formation of cilia.	Plays an indirect role in sonic	chedgehog signaling, cilia being
--	----------	--------------------------------------	---------------------------------	----------------------------------

required for all activity of the hedgehog pathway (By similarity). Has pro-apoptotic function via its interaction with HIP1, leading to recruit caspase-8 (CASP8) and trigger apoptosis. Has the ability to bind DNA sequence motif 5'-AAAGACATG-3' present in the promoter of caspase genes such as CASP1, CASP8 and CASP10, suggesting that it may act as a transcription regulator; however

the relevance of such function remains unclear.

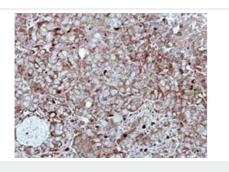
Tissue specificity Present in many tissues such as brain, thymus, lymph node, lung, liver, skin and kidney (at protein


level).

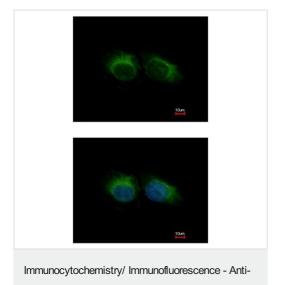
Sequence similarities Belongs to the IFT57 family.

Domain The pseudo DED region (pDED) meadiates the interaction with HIP1.

Cellular localization Cytoplasm > cytoskeleton > cilium basal body. Concentrates within the inner segment of cilia.


Images

Anti-HIPPI/IFT57 antibody (ab154601) at 1/1000 dilution + Raji whole cell lysate at 30 μg


Predicted band size: 49 kDa

10% SDS PAGE

Immunohistochemistry (Formalin/PFA-fixed paraffinembedded sections) - Anti-HIPPI/IFT57 antibody (ab154601)

Immunohistochemical analysis of paraffin-embedded H661 xenograft labeling HIPPI/IFT57 with ab154601 at 1/500 dilution.

HIPPI/IFT57 antibody (ab154601)

Immunofluorescent analysis of methanol-fixed HeLa cells labeling HIPPI/IFT57 with ab154601 at 1/200 dilution. Lower panel costained with Hoechst 33342.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors						