abcam

Product datasheet

Anti-MCP1 antibody [2H5] ab21396

**** 1 Abreviews 12 References 1 Image

Overview

Product name Anti-MCP1 antibody [2H5]

Description Armenian hamster monoclonal [2H5] to MCP1

Host species Armenian hamster

Specificity This antibody is specific to mouse MCP-1.

Tested applications Suitable for: ELISA

Species reactivity Reacts with: Recombinant fragment

Immunogen Recombinant full length protein corresponding to Mouse MCP1. CHO expressed, recombinant

mouse MCP-1.

Positive control IHC- central nervous system of rats or mice with experimental autoimmune encephalomyelitis.

General notesThe Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or

contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C short term (1-2 weeks). Store at -20°C or -80°C. Avoid freeze /

thaw cycle.

Storage buffer pH: 7.20

Preservative: 0.09% Sodium azide

Constituent: PBS

Purity Affinity purified

Purification notes Purity >95% by SDS-PAGE.

Clonality Monoclonal

Clone number 2H5
Isotype IqG

1

Applications

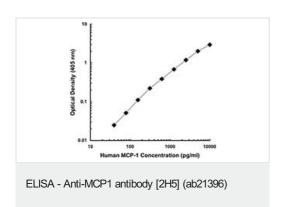
The Abpromise guarantee

Our **Abpromise guarantee** covers the use of ab21396 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
ELISA	**** (1)	Use a concentration of 5 - 10 µg/ml. To obtain a linear standard curve, serial dilutions of MCP-1 recombinant protein ranging from 2000 to 15 pg/ml are recommended for each ELISA plate.

Target


Function	Chemotactic factor that attracts monocytes and basophils but not neutrophils or eosinophils. Augments monocyte anti-tumor activity. Has been implicated in the pathogenesis of diseases characterized by monocytic infiltrates, like psoriasis, rheumatoid arthritis or atherosclerosis. May be involved in the recruitment of monocytes into the arterial wall during the disease process of atherosclerosis.	
Sequence similarities	Belongs to the intercrine beta (chemokine CC) family.	
Do at two wallstin and	Book and the Miles and the Mil	

Post-translational modifications

Processing at the N-terminus can regulate receptor and target cell selectivity. Deletion of the N-terminal residue converts it from an activator of basophil to an eosinophil chemoattractant.

Cellular localization Secreted.

Images

Ab21396 staining human MCP-1 by ELISA. Image shows a standard curve obtained with increasing concentrations of human MCP-1.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- · Response to your inquiry within 24 hours

- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors