abcam

Product datasheet

Anti-Tau (phospho T212) antibody ab4842

5 References 1 Image

Overview

Product name Anti-Tau (phospho T212) antibody

Description Rabbit polyclonal to Tau (phospho T212)

Host species Rabbit

Specificity Phosphorylation site-specific antibody selective for the phosphorylated form of human tau

containing a phosphate on threonine 212.

The specificity of this antibody refers to P10636-8.

Tested applications
Suitable for: ICC/IF
Species reactivity
Reacts with: Human

Immunogen Synthetic peptide corresponding to Human Tau (phospho T212). The antibody was produced

against the region of human Tau that contains threonine 212. The sequence is conserved in many

species including mouse, rat, rhesus monkey, baboon, cow and goat.

Database link: P10636-8

Positive control ICC/IF: SHSY5Y cells.

General notesThe Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.

Storage buffer pH: 7.30

Preservative: 0.05% Sodium azide

Constituents: PBS, 50% Glycerol (glycerin, glycerine), 0.1% BSA

Purity Immunogen affinity purified

Purification notes Purified from rabbit serum by sequential epitope-specific chromatography. The antibody has

been negatively preadsorbed using a non-phosphopeptide corresponding to the site of

1

phosphorylation to remove antibody that is reactive with non-phosphorylated tau. The final product is generated by affinity chromatography using a tau-derived peptide that is phosphorylated at

threonine 212.

Clonality Polyclonal

Isotype IgG

Applications

The Abpromise guarantee

Our **Abpromise guarantee** covers the use of ab4842 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
ICC/IF		Use a concentration of 1 µg/ml.

Target

Function

Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by tau localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.

Tissue specificity

Expressed in neurons. Isoform PNS-tau is expressed in the peripheral nervous system while the others are expressed in the central nervous system.

Involvement in disease

Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU).

Defects in MAPT are a cause of frontotemporal dementia (FTD) [MIM:600274]; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presentle dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in glial cells and/or neurons.

Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:172700]. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionally affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anomia, memory loss and personality deterioration.

Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease.

Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:601104, 260540]; also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract

dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.

Sequence similarities

Contains 4 Tau/MAP repeats.

Developmental stage

Four-repeat (type II) tau is expressed in an adult-specific manner and is not found in fetal brain, whereas three-repeat (type I) tau is found in both adult and fetal brain.

Domain

The tau/MAP repeat binds to tubulin. Type I isoforms contain 3 repeats while type II isoforms contain 4 repeats.

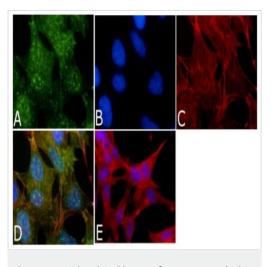
Post-translational modifications

Phosphorylation at serine and threonine residues in S-P or T-P motifs by proline-directed protein kinases (PDPK: CDK1, CDK5, GSK-3, MAPK) (only 2-3 sites per protein in interphase, seven-fold increase in mitosis, and in PHF-tau), and at serine residues in K-X-G-S motifs by MAP/microtubule affinity-regulating kinase (MARK) in Alzheimer diseased brains.

Phosphorylation decreases with age. Phosphorylation within tau's repeat domain or in flanking regions seems to reduce tau's interaction with, respectively, microtubules or plasma membrane components. Phosphorylation on Ser-610, Ser-622, Ser-641 and Ser-673 in several isoforms during mitosis.

Polyubiquitinated. Requires functional TRAF6 and may provoke SQSTM1-dependent degradation by the proteasome (By similarity). PHF-tau can be modified by three different forms of polyubiquitination. 'Lys-48'-linked polyubiquitination is the major form, 'Lys-6'-linked and 'Lys-11'-linked polyubiquitination also occur.

Glycation of PHF-tau, but not normal brain tau. Glycation is a non-enzymatic post-translational modification that involves a covalent linkage between a sugar and an amino group of a protein molecule forming ketoamine. Subsequent oxidation, fragmentation and/or cross-linking of ketoamine leads to the production of advanced glycation endproducts (AGES). Glycation may play a role in stabilizing PHF aggregation leading to tangle formation in AD.


Cellular localization

Cytoplasm > cytosol. Cell membrane. Cytoplasm > cytoskeleton. Cell projection > axon. Mostly found in the axons of neurons, in the cytosol and in association with plasma membrane components.

Form

There are 9 isoforms produced by alternative splicing.

Images

Immunocytochemistry/ Immunofluorescence - Anti-Tau (phospho T212) antibody (ab4842)

SHSY5Y cells stained for Tau (green) using ab4842 at 1µg/mL in ICC/IF. Followed by Alexa Fluor 488 Goat Anti-Rabbit IgG Secondary Antibody at 1/400 dilution for 45 minutes at room temperature (Panel a). Nuclei (Panel b: blue) were stained with SlowFade® Gold Antifade Mountant with DAPI. F-actin (Panel c: red) was stained with Alexa Fluor 594 Phalloidin. Panel d is a merged image showing nuclear and cytoplasmic localization. Panel e is a no primary antibody control.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

· Guarantee only valid for products bought direct from Abcam or one of our authorized distributors