abcam

Product datasheet

Anti-TEAD4 antibody [5H3] ab58310

***** * * * * 4 Abreviews 80 References 3 Images

Overvie	M
Overvie	vv

Product name	Anti-TEAD4 antibody [5H3]				
Description	Mouse monoclonal [5H3] to TEAD4				
Host species	Mouse				
Tested applications	Suitable for: WB				
Species reactivity	Reacts with: Human				
Immunogen	Recombinant fragment, corresponding to amino acids 151-261 of Human TEAD4				
General notes	This product was changed from ascites to tissue culture supernatant on 30 th May 2019. Please note that the dilutions may need to be adjusted accordingly. If you have any questions, please do not hesitate to contact our scientific support team.				
	The Life Science industry has been in the grips of a reproducibility crisis for a number of years. Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets your needs before purchasing.				
	If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be found below, along with publications, customer reviews and Q&As				
Properties					
Form	Liquid				
Storage instructions	Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or - 80°C. Avoid freeze / thaw cycle.				
Storage buffer	pH: 7.40 Constituents: 8% Sodium chloride, 0.6% Dibasic monohydrogen sodium phosphate, 0.2% Monobasic dihydrogen potassium phosphate, 0.2% Potassium chloride, 91% Water				
Purity	Protein A purified				
Clonality	Monoclonal				
Clone number	5H3				
lsotype	lgG2a				
Light chain type	kappa				

Applications

The Abpromise guarantee Our <u>Abpromise guarantee</u> covers the use of ab58310 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
WB	★★★★ <u></u> (<u>1</u>)	Use at an assay dependent concentration. Predicted molecular weight: 48 kDa.

Target	
Function	Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif.
Tissue specificity	Preferentially expressed in skeletal muscle. Lower levels in pancreas, placenta, and heart.
Sequence similarities	Contains 1 TEA DNA-binding domain.
Cellular localization	Nucleus.

Images

	1	2		3	4	
250 kDa —	250 kDa —		250 kDa —		250 kDa —	
150 kDa —	150 kDa —		150 kDa —		150 kDa —	
100 kDa —	100 kDa —		100 kDa —		100 kDa —	
75 kDa —	. 75 kDa —		75 kDa —		75 kDa —	
50 kDa—	50 kDa —	1	50 kDa—		50 kDa —	
37 kDa—	37 kDa-	•	37 kDa—		37 kDa—	
25 kDa 20 kDa 20 kDa 15 kDa 20	25 kDa— 20 kDa— 15 kDa— 10 kDa—		25 kDa— 20 kDa— 15 kDa— 10 kDa—		25 kDa— 20 kDa— 15 kDa— 10 kDa—	
인 1년 75 kDa-	75 kDa—		75 kDa—		^{75 kDa−} \	His-tag (lane 1, 3, 4)
o 50 kDa—	50 kDa-		50 kDa—	-	50 kDa— ∫ a	and GST-tag (lane 2)

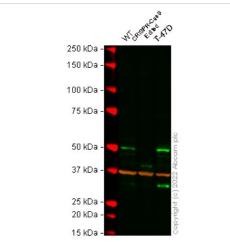
Western blot - Anti-TEAD4 antibody [5H3] (ab58310)

All lanes : Anti-TEAD4 antibody [5H3] (ab58310) at 1/1000 dilution

Lane 1 : TEAD1 Human Recombinant Protein

Lane 2 : TEAD2 Human Recombinant Protein

- Lane 3 : TEAD3 Human Recombinant Protein
- Lane 4 : TEAD4 Human Recombinant Protein


Lysates/proteins at 20 µg per lane.

Secondary

All lanes : Goat Anti-mouse IgG at 1/5000 dilution

Predicted band size: 48 kDa Observed band size: 50-75 kDa

Exposure time: 180 seconds

Western blot - Anti-TEAD4 antibody [5H3] (ab58310)

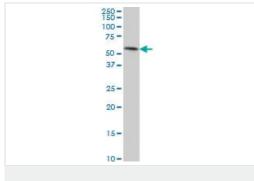
Blocking/Diluting buffer and concentration: 5% NFDM/TBST.

All lanes : Anti-TEAD4 antibody [5H3] (ab58310) at 1 µg

Lane 1 : Wild-type A549 cell lysate Lane 2 : TEAD4 CRISPR-Cas9 edited A549 cell lysate Lane 3 : T-47D cell lysate

Lysates/proteins at 20 µg per lane.

Secondary


All lanes : Goat anti-Mouse IgG H&L 800CW and Goat anti-Rabbit IgG H&L 680RD at 1/20000 dilution

Performed under reducing conditions.

Predicted band size: 48 kDa Observed band size: 48 kDa

False colour image of Western blot: Anti-TEAD4 antibody [5H3] staining at 1 ug/ml, shown in green; Rabbit Anti-GAPDH antibody [EPR16891] (**ab181602**) loading control staining at 1/20000 dilution, shown in red.

In Western blot, ab58310 was shown to bind specifically to TEAD4. A band was observed at 48 kDa in wild-type A549 cell lysates with no signal observed at this size in TEAD4 CRISPR-Cas9 edited cell line ab277855. The band observed in the CRISPR-Cas9 edited lysate lane below 48 kDa is likely to represent a truncated form of TEAD4. This has not been investigated further and the functional properties of the gene product have not been determined. To generate this image, wild-type and TEAD4 CRISPR-Cas9 edited A549 cell lysates were analysed. First, samples were run on an SDS-PAGE gel then transferred onto a nitrocellulose membrane. Membranes were blocked in 3 % milk in TBS-0.1 % Tween® 20 (TBS-T) before incubation with primary antibodies overnight at 4 °C. Blots were washed four times in TBS-T, incubated with secondary antibodies for 1 h at room temperature, washed again four times then imaged. Secondary antibodies used were Goat anti-Mouse IgG H&L 800CW and Goat anti-Rabbit IgG H&L 680RD at 1/20000 dilution.

TEAD4 antibody (ab58310) at 1ug/lane + HeLa cell lysate at 25ug/lane.

This image was generated using the ascites version of the product.

Western blot - Anti-TEAD4 antibody [5H3] (ab58310)

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit <u>https://www.abcam.com/abpromise</u> or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors