abcam

Product datasheet

Anti-XPA antibody ab85914

★★★★★ 1 Abreviews 8 References 3 Images

Overview

Product name Anti-XPA antibody

Description Rabbit polyclonal to XPA

Host species Rabbit

Tested applications Suitable for: WB, IP, IHC-P

Species reactivity Reacts with: Human

Predicted to work with: Rhesus monkey, Gorilla, Elephant

Immunogen Synthetic peptide, corresponding to a region between residues 1 and 50 of Human XPA

(NP_000371.1)

General notesThe Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.

Storage buffer pH: 6.8

Preservative: 0.09% Sodium azide

Constituents: Tris buffered saline, 0.1% BSA

Purity Immunogen affinity purified

Purification notes ab85914 was affinity purified using an epitope specific to XPA immobilized on solid support.

Clonality Polyclonal

Isotype IgG

Applications

1

The Abpromise guarantee

Our Abpromise guarantee covers the use of ab85914 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
WB	★★★★☆ (1)	1/2000 - 1/10000. Detects a band of approximately 39 kDa (predicted molecular weight: 31 kDa).
IP		Use at 2-5 µg/mg of lysate.
IHC-P		1/200 - 1/1000. Perform heat mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol.

Target

Function Involved in DNA excision repair. Initiates repair by binding to damaged sites with various

affinities, depending on the photoproduct and the transcriptional state of the region. Required for UV-induced CHK1 phosphorylation and the recruitment of CEP164 to cyclobutane pyrimidine

dimmers (CPD), sites of DNA damage after UV irradiation.

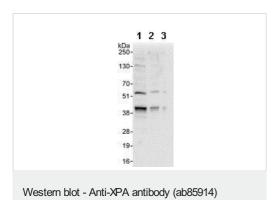
Tissue specificity Expressed in various cell lines and in skin fibroblasts.

Involvement in disease Defects in XPA are a cause of xeroderma pigmentosum complementation group A (XP-A)

[MIM:278700]; also known as xeroderma pigmentosum type 1 (XP1). XP-A is a rare human

autosomal recessive disease characterized by solar sensitivity, high predisposition for developing cancers on areas exposed to sunlight and, in some cases, neurological abnormalities.

Group A patients show the most severe skin symptoms and progressive neurological disorders.


Sequence similarities Belongs to the XPA family.

Post-translational Phosphorylated upon DNA damage, probably by ATM or ATR.

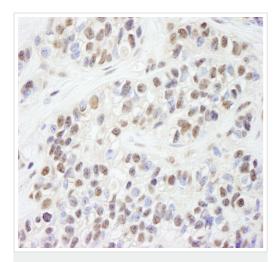
modifications Ubiquitinated by HERC2 leading to degradation by the proteasome.

Cellular localization Nucleus.

Images

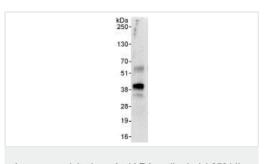
All lanes: Anti-XPA antibody (ab85914) at 0.04 µg/ml

Lane 1: HeLa whole cell lysate at 50 μg **Lane 2**: HeLa whole cell lysate at 15 μg **Lane 3**: HeLa whole cell lysate at 5 μg


Predicted band size: 31 kDa **Observed band size:** 39 kDa

Additional bands at: 55 kDa. We are unsure as to the identity of

these extra bands.


Exposure time: 30 seconds

Detection: Chemiluminescence with exposure time of 30 seconds

Immunohistochemistry (Formalin/PFA-fixed paraffinembedded sections) - Anti-XPA antibody (ab85914)

Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) analysis of human breast carcinoma tissue labelling XPA with ab85914 at 1/1000 (0.2 μ g/ml). Detection: DAB.

Immunoprecipitation - Anti-XPA antibody (ab85914)

Detection of XPA by Western Blot of Immunprecipitate. ab85914 at $0.1\mu g/ml$ staining XPA in HeLa whole cell lysate immunoprecipitated using ab85914 at $3\mu g/mg$ lysate (1 mg/IP; 20% of IP loaded/lane).

Detection: Chemiluminescence with exposure time of 30 seconds.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				
		4			