abcam

Product datasheet

Recombinant Human PPAR alpha protein ab81927

1 References

Description

Product name Recombinant Human PPAR alpha protein

Purity > 95 % SDS-PAGE.

Expression system Escherichia coli

Accession Q07869

Protein length Full length protein

Animal free No

Nature Recombinant

Species Human

Sequence MVDTESPLCPLSPLEAGDLESPLSEEFLQEMGNIQEISQSI

GEDSSGSFG

 ${\tt FTEYQYLGSCPGSDGSVITDTLSPASSPSSVTYPVVPGSV}$

DESPSGALNI

ECRICGDKASGYHYGVHACEGCKGFFRRTIRLKLVYDKCD

RSCKIQKKNR

NKCQYCRFHKCLSVGMSHNAIRFGRMPRSEKAKLKAEILT

CEHDIEDSET

ADLKSLAKRIYEAYLKNFNMNKVKARVILSGKASNNPPFVI

HDMETLCMA

EKTLVAKLVANGIQNKEAEVRIFHCCQCTSVETVTELTEFA

KAIPGFANL

DLNDQVTLLKYGVYEAIFAMLSSVMNKDGMLVAYGNGFIT

REFLKSLR

KPFCDIMEPKFDFAMKFNALELDDSDISLFVAAIICCGDRP

GLLNVGHIE

KMQEGIVHVLRLHLQSNHPDDIFLFPKLLQKMADLRQLVT

EHAQLVQIIK KTESDAALHPLLQEIYRDMY

Amino acids 1 to 468

Tags His tag N-Terminus

Specifications

Our Abpromise guarantee covers the use of ab81927 in the following tested applications.

1

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications Gel Supershift Assays

SDS-PAGE

EMSA

Form Liquid

Preparation and Storage

Stability and Storage Shipped on dry ice. Upon delivery aliquot and store at -80°C. Avoid freeze / thaw cycles.

pH: 7.9

Constituents: 0.75% Potassium chloride, 0.0154% DTT, 0.316% Tris HCI, 0.00584% EDTA, 20%

Glycerol (glycerin, glycerine)

General Info

Function Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the

endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety (By similarity). Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized

by NR2C2.

Tissue specificity Skeletal muscle, liver, heart and kidney.

Sequence similaritiesBelongs to the nuclear hormone receptor family. NR1 subfamily.

Contains 1 nuclear receptor DNA-binding domain.

Cellular localization Nucleus.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors	
		3