abcam

Product datasheet

Recombinant Human Prosurfactant Protein Cab114293

1 Image

Description

Product name Recombinant Human Prosurfactant Protein C

Expression system Wheat germ
Accession P11686

Protein length Full length protein

Animal free No

Nature Recombinant

Species Human

Sequence MDVGSKEVLMESPPDYSAAPRGRFGIPRCPVHLKRLLIVV

VVVVLIVVVI

VGALLMGLHMSQKHTEMVLEMSIGAPEAQQRLALSEHLV

TTATFSIGSTG

LVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVH

NFQMECSL

QAKPAVPTSKLGQAEGRDAGSAPSGGDPAFLGMAVNTL

CGEVPLYYI

Predicted molecular weight 47 kDa including tags

Amino acids 1 to 197

Description Recombinant Human Prosurfactant Protein C

Specifications

Our **Abpromise guarantee** covers the use of **ab114293** in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications Western blot

ELISA

SDS-PAGE

Form Liquid

Preparation and Storage

Stability and Storage Shipped on dry ice. Upon delivery aliquot and store at -80°C. Avoid freeze / thaw cycles.

1

Constituents: 0.3% Glutathione, 0.79% Tris HCI

General Info

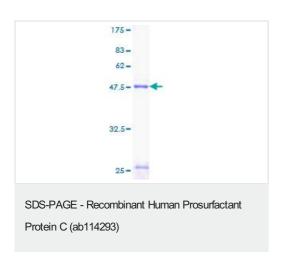
Function

Pulmonary surfactant associated proteins promote alveolar stability by lowering the surface tension at the air-liquid interface in the peripheral air spaces.

Involvement in disease

Defects in SFTPC are the cause of pulmonary surfactant metabolism dysfunction type 2 (SMDP2) [MIM:610913]; also called pulmonary alveolar proteinosis due to surfactant protein C deficiency. A rare disease associated with progressive respiratory insufficiency and lung disease with a variable clinical course, due to impaired surfactant homeostasis. It is characterized by alveolar filling with floccular material that stains positive using the periodic acid-Schiff method and is derived from surfactant phospholipids and protein components. Excessive lipoproteins accumulation in the alveoli results in severe respiratory distress.

Genetic variations in SFTPC are a cause of susceptibility to respiratory distress syndrome in premature infants (RDS) [MIM:267450]; also known as RDS in prematurity. RDS is a lung disease affecting usually premature newborn infants. It is characterized by deficient gas exchange, diffuse atelectasis, high-permeability lung edema and fibrin-rich alveolar deposits called 'hyaline membranes'.


Sequence similarities

Contains 1 BRICHOS domain.

Cellular localization

Secreted > extracellular space > surface film.

Images

ab114293 analysed on a 12.5% SDS-PAGE gel stained with Coomassie Blue.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish

- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors