abcam

Product datasheet

Recombinant Human UBE2S protein ab87756

1 Image

Description

Product name Recombinant Human UBE2S protein

Purity > 90 % SDS-PAGE.

ab87756 was purified using conventional chromatography techniques.

Expression system Escherichia coli

Protein length Full length protein

Animal free No

Nature Recombinant

Species Human

Sequence MRGSHHHHHH GMASMTGGQQ MGRDLYDDDD

KDRWGSMNSN VENLPPHIIR LVYKEVTTLT ADPPDGIKVF PNEEDLTDLQ VTIEGPEGTP

YAGGLFRMKL LLGKDFPASP PKGYFLTKIF HPNVGANGEI CVNVLKRDWT AELGIRHVLL TIKCLLIHPN PESALNEEAG

RLLLENYEEY AARARLLTEI HGGAGGPSGR AEAGRALASG TEASSTDPGA PGGPGGAEGP MAKKHAGERD KKLAAKKKTD KKRALRRL

Specifications

Our Abpromise guarantee covers the use of ab87756 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications SDS-PAGE

Form Liquid

Preparation and Storage

Stability and Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw

cycles.

pH: 8.00

Constituents: 0.0154% DTT, 0.316% Tris HCl, 20% Glycerol (glycerin, glycerine)

1

General Info

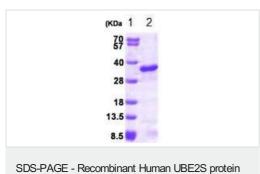
Function

Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes 'Lys-11'-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis. Acts by specifically elongating 'Lys-11'-linked polyubiquitin chains initiated by the E2 enzyme UBE2C/UBCH10 on APC/C substrates, enhancing the degradation of APC/C substrates by the proteasome and promoting mitotic exit. Also acts by elongating ubiquitin chains initiated by the E2 enzyme UBE2D1/UBCH5 in vitro; it is however unclear whether UBE2D1/UBCH5 acts as a E2 enzyme for the APC/C in vivo. Also involved in ubiquitination and subsequent degradation of VHL, resulting in an accumulation of HIF1A. In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, except 'Lys-48'-linked polyubiquitination.

Pathway

Protein modification; protein ubiquitination.

Sequence similarities


Belongs to the ubiquitin-conjugating enzyme family.

Post-translational modifications

Autoubiquitinated by the APC/C complex during G1, leading to its degradation by the

proteasome.

Images

15% SDS-PAGE analysis of 3µg ab87756.

(ab87756)

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors