All tags Proteins and Peptides Differentiate hematopoietic cells from hESCs

Differentiate hematopoietic cells from hESCs

The cytokines and co-culture feeder cells you need to differentiate hESCs into mature myeloid and lymphoid cells.

Pluripotent stem cells can be used to generate hematopoietic stem and mature cells using in vitro differentiation protocols. Here we use human embryonic stem cells (hESCs) as the source of pluripotent stem cells and highlight the relevant cytokines and feeder cells necessary to differentiate them towards myeloid and lymphoid lineages.


Mature cell

Differentiating cytokines

Co-culture

Reference

B cells

BMP4, VEGF, FGF1, bFGF, SCF, Flt3-L, TPO, GM-CSF, IL-2, IL-4, IL-15, G-CSF, IL-3, IL-6, IL-7

OP9

1

IL-7, IL-3, SCF, Flt3-L

OP9, MS5

2

Dendritic cells

GM-CSF, IL-4, TNF-α


3

SCF, Flt3-L, GM-CSF, IL-3, TPO, IL-4, TNF-a


4

Eosinophils

IL-3, IL-5

OP9

3

Erythrocytes

bFGF, VEGF, EPO, SCF, nFlt3-L, IL-3, IL-6, G-CSF, TPO


5

SCF, IL-3, IL-6, TPO, G-CSF, EPO

mFL stromal cells

6

EPO, TPO, IL-3, IL-6, Flt3-L, SCF, Dex

OP9, MS5

7

Granulocytes

IGF-II, VEGF, SCF, Flt3-L, TPO, G-CSF


8

BMP4, VEGF, SCF, TPO, Flt3-L, IL-3, G-CSF


9

IL-3, G-CSF or GM-CSF


10

Macrophage

M-CSF, IL-1β


3

Megakaryocytes/ platelets

BMP4, VEGF, bFGF, SCF, TPO, IL-3


11

BMP4, VEGF, IL-3, Flt3-L, TPO, SCF, EPO

OP9

12

BMP4, VEGF, bFGF, TPO, SCF, Flt3-L, IL-3, IL-6, IL-9


13

Neutrophil

SCF, Flt-3 ligand, IL-6, IL-6 receptor, thrombopoietin, IL-3, G-CSF

OP9

14

G-CSF

OP9

3

NK cells

BMP4, bFGF, Activin A, VEGF, IGF-1, IL-6, IL-11, SCF, IL-3, EPO, TPO, IL-13, Flt3-L, IL-15

OP9-DL4

15

BMP4, VEGF, SCF, IL-3, Il-6, TPO, EPO, IL-7, Flt3-L, IL-15

OP9-DL1

16

T cells

Flt-3 ligand, IL-7, SCF

OP9-DL1

17

BMP4, bFGF, Activin A, VEGF, IL-6, IGF-1, IL-11, SCF, EPO, TPO, Flt3-L, IL-7, IL-15

OP9-DL4

18

BMP4, bFGF, Activin A, VEGF, IGF-1, IL-6, IL-11, SCF, IL-3, EPO, TPO, IL-3, Flt3-L, IL-7

OP9-DL4

15

BMP4, bFGF, VEGF, TPO, SCF, IL-6, IL-3, IL-7, Flt3-L

OP9-DL1, OP9-DL4

19




After differentiation, myeloid and lymphoid cells can be characterized by flow cytometry using specific cell surface markers from our immune cell markers poster.



References

1.    Zambidis, E. T. et al. Expression of ACE (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112, 3601–3615 (2008).

2.    French, A., Yang, C.-T., Taylor, S., Watt, S. M. & Carpenter, L. Human Induced Pluripotent Stem Cell-Derived B Lymphocytes Express sIgM and Can be Generated via a Hemogenic Endothelium Intermediate. Stem Cells Dev. 0, 150225071446008 (2015).

3.    Choi, K. D., Vodyanik, M. A. & Slukvin, I. I. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43 +CD45+ progenitors. J. Clin. Invest. 119, 2818–2829 (2009).

4.    Su, Z., Frye, C., Bae, K. M., Kelley, V. & Vieweg, J. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res 14, 6207–6217 (2008).

5.    Chang, K. H. et al. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108, 1515–1523 (2006).

6.    Ma, F. et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 105, 13087–13092 (2008).

7.    Dias, J. et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 20, 1639–47 (2011).

8.    Saeki, K. et al. A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells 27, 59–67 (2009).

9.    Niwa, A. et al. A novel Serum-Free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 6, (2011).

10. Lachmann, N. et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports 4, 282–296 (2015).

11.  Pick, M., Azzola, L., Osborne, E., Stanley, E. G. & Elefanty, A. G. Generation of Megakaryocytic Progenitors from Human Embryonic Stem Cells in a Feeder- and Serum-Free Medium. PLoS One 8, (2013).

12.  Vanhee, S. et al. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica 100, 157–166 (2015).

13.  Feng, Q. et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 3, 817–831 (2014).

14.  Yokoyama, Y. et al. Derivation of functional mature neutrophils from human embryonic stem cells. Blood 113, 6584–6592 (2009).

15.  Sturgeon, C. M., Ditadi, A., Awong, G., Kennedy, M. & Keller, G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol. 32, 554–61 (2014).

16.  Ferrell, P. I., Xi, J., Ma, C., Adlakha, M. & Kaufman, D. S. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells. Stem Cells 33, 1130–1141 (2015).

17.  Timmermans, F. et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J. Immunol. 182, 6879–6888 (2009).

18.  Kennedy, M. et al. T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures. Cell Rep. 2, 1722–1735 (2012).

19.  Uenishi, G. et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports 3, 1073–1084 (2014).

Sign up