Instructions for Use

For the quantitative measurement of Human GC Globulin concentrations in cell culture supernatants, plasma and serum

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Introduction 3
2. Assay Summary 4
3. Kit Contents 5
4. Storage and Handling 6
5. Additional Materials Required 6
6. Preparation of Reagents 7
7. Assay Method 9
8. Data Analysis 11
9. Specificity 12
10. Troubleshooting 13
1. Introduction

ab108853 is designed for detection of Human GC Globulin in plasma, serum and cell culture supernatants. This assay employs a quantitative competitive enzyme immunoassay technique that measures Human GC Globulin in less than 3 hours. A polyclonal antibody specific for Human GC Globulin has been pre-coated onto a 96-well microplate with removable strips. GC Globulin in standards and samples is competed with a biotinylated GC Globulin sandwiched by the immobilized antibody and streptavidin-peroxidase conjugate. All unbound material is then washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.
2. Assay Summary

Prepare all reagents, samples and standards as instructed.

Add 25 µl standard or sample to each well and immediately add 25 µl prepared biotin antibody to each well.

Incubate 2 hour at room temperature.

Wash the microplate 5 x with wash buffer.

Add 50 µl of Streptavidin-Peroxidase Conjugate.

Incubate 30 minutes at room temperature.

Wash the microplate 5 x with wash buffer.

Add 50 µl of Chromogen Substrate to each well.

Incubate 8 minutes or till the optimal blue colour density develops.

Add 50 µl Stop Solution to each well. Read at 450 nm immediately.
3. Kit Contents

- Human GC Globulin Microplate: A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against Human GC Globulin.
- Sealing Tapes: Each kit contains 3 pre-cut, pressure-sensitive sealing tapes that can be cut to fit the format of the individual assay.
- Diluent Concentrate (10x): A 10-fold concentrated buffered protein base (30ml).
- Biotinylated GC Globulin: 1 vial (lyophilized).
- Wash Buffer Concentrate (10x): A 10-fold concentrated buffered surfactant (2 x 30 ml).
- Streptavidin-Peroxidase Conjugate (SP Conjugate): A 100-fold concentrate (80 µl)
- Chromogen Substrate: A ready-to-use stabilized peroxidase chromogen substrate tetramethylbenzidine (8 ml).
- Stop Solution: A 0.5 N hydrochloric acid to stop the chromogen substrate reaction (12 ml).
4. Storage and Handling

ab108853 may be stored until the expiration date at 2 to 8°C or -20°C from the date of shipment. Opened diluents may be stored for up to 1 month at 2 to 8°C. Store reconstituted reagents at -20°C or below. Opened unused strip wells may return to the foil pouch with the desiccant pack, reseal along zip-seal. May be stored for up to 1 month in a vacuum desiccator.

5. Additional Materials Required

- Microplate reader capable of measuring absorbance at 450 nm.
- Precision pipettes to deliver 1 µl, 200 µl and multiple channel.
- Distilled or deionized reagent grade water.
6. Preparation of Reagents

Sample Collection:

1. **Plasma**: Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 2000 x g for 10 minutes and assay. Dilute samples 1:400 in Diluent. Store samples at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles. (Heparin and EDTA can also be used as an anticoagulant)

2. **Serum**: Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 2000 x g for 10 minutes. Remove serum and assay. Dilute samples 1:400 into Diluent. Store serum at -20°C or below. Avoid repeated freeze-thaw cycles.

3. **Cell Culture Supernatants**: Centrifuge cell culture media at 2000 x g for 10 minutes to remove debris. Collect supernatants and assay. Store samples at -20°C or below. Avoid repeated freeze-thaw cycles.

Reagent Preparation:

1. Freshly dilute all reagents and bring all reagents to room temperature before use. If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.
2. **Diluent (10x):** Dilute the Diluent 1:10 with reagent grade water. Store for up to 1 month at 2 to 8°C.

3. **Standard Curve:** Reconstitute the of GC-Globulin Standard with appropriate amount of Diluent to generate a solution of 100 µg/ml. Allow the standard to sit for 10 minutes with 3 gentle agitation prior to making dilutions. Prepare duplicate or triplicate standard points by serially diluting the standard solution (100 µg/ml) 1:4 with Diluent to generate 25, 6.25, 1.56, 0.391 and 0.098 µg/ml solutions. Diluent serves as the zero standard (0 µg/ml). Any remaining solution should be frozen at -20°C.

<table>
<thead>
<tr>
<th>Standard Point</th>
<th>Dilution</th>
<th>[GC Globulin] (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1 Part Standard (100 µg/ml)</td>
<td>100.000</td>
</tr>
<tr>
<td>P2</td>
<td>1 part P1 + 1 part Diluent</td>
<td>25.000</td>
</tr>
<tr>
<td>P3</td>
<td>1 part P2 + 1 part Diluent</td>
<td>6.250</td>
</tr>
<tr>
<td>P4</td>
<td>1 part P3 + 1 part Diluent</td>
<td>1.563</td>
</tr>
<tr>
<td>P5</td>
<td>1 part P4 + 1 part Diluent</td>
<td>0.391</td>
</tr>
<tr>
<td>P6</td>
<td>1 part P5 + 1 part Diluent</td>
<td>0.098</td>
</tr>
<tr>
<td>P7</td>
<td>Diluent</td>
<td>0.000</td>
</tr>
</tbody>
</table>
4. **Biotinylated GC-Globulin (1x):** Dilute Biotinylated GC-Globulin with 4 ml Diluent to use. Allow to sit for 10 minutes with gentle agitation prior to use. Any remaining solution should be frozen at -20°C.

5. **Wash Buffer Concentrate (10x):** Dilute the Wash Buffer Concentrate 1:10 with reagent grade water.

6. **SP Conjugate (100x):** Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 1:100 with Diluent. Any remaining solution should be frozen at -20°C.

7. **Assay Method**

 1. Prepare all reagents, working standards and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-30°C).

 2. Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccant inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum dessicator.

 3. Add 25 µl of standard or sample per well and immediately add 25 µl of Biotinylated GC Globulin to each well (on top of the Standard or sample) and mix gently. Cover wells with a sealing tape and incubate for two hours. Start the timer after the last sample addition.
4. Wash five times with 200 µl of Wash Buffer manually. Invert the plate each time and decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid. If using a machine wash six times with 300 µl of Wash Buffer and then invert the plate, decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid.

5. Add 50 µl of Streptavidin-Peroxidase Conjugate to each well and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.

6. Wash microplate as described above.

7. Add 50 µl of Chromogen Substrate per well and incubate for about 8 minutes or till the optimal blue color density develops. Gently tap plate to ensure thorough mixing and break the bubbles in the well with pipette tip.

8. Add 50 µl of Stop Solution to each well. The color will change from blue to yellow.

9. Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.
8. Data Analysis

Calculate the mean value of the duplicate or triplicate readings for each standard and sample. To generate a Standard Curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit. Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.

A. Typical Data

The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.
B. **Sensitivity**

The minimum detectable dose of GC Globulin is typically 0.09 µg/ml.

C. **Reproducibility**

Intra-Assay: CV = 4.9%

Inter-Assay: CV = 7.5%

9. **Specificity**

No significant cross-reactivity or interference was observed.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Improper standard dilution</td>
<td>Confirm dilutions made correctly</td>
</tr>
<tr>
<td></td>
<td>Standard improperly reconstituted (if applicable)</td>
<td>Briefly spin vial before opening; thoroughly resuspend powder (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Standard degraded</td>
<td>Store sample as recommended</td>
</tr>
<tr>
<td></td>
<td>Curve doesn't fit scale</td>
<td>Try plotting using different scale</td>
</tr>
<tr>
<td>Low signal</td>
<td>Incubation time too short</td>
<td>Try overnight incubation at 4 °C</td>
</tr>
<tr>
<td></td>
<td>Target present below detection limits of assay</td>
<td>Decrease dilution factor; concentrate samples</td>
</tr>
<tr>
<td></td>
<td>Precipitate can form in wells upon substrate addition when concentration of target is too high</td>
<td>Increase dilution factor of sample</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
<tr>
<td></td>
<td>Sample prepared incorrectly</td>
<td>Ensure proper sample preparation/dilution</td>
</tr>
<tr>
<td>High background</td>
<td>Wells are insufficiently washed</td>
<td>Wash wells as per protocol recommendations</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
</tr>
<tr>
<td></td>
<td>Waiting too long to read plate after adding STOP solution</td>
<td>Read plate immediately after adding STOP solution</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Large CV</td>
<td>Bubbles in wells</td>
<td>Ensure no bubbles present prior to reading plate</td>
</tr>
<tr>
<td></td>
<td>All wells not washed equally/thoroughly</td>
<td>Check that all ports of plate washer are unobstructed/wash wells as recommended</td>
</tr>
<tr>
<td></td>
<td>Incomplete reagent mixing</td>
<td>Ensure all reagents/master mixes are mixed thoroughly</td>
</tr>
<tr>
<td></td>
<td>Inconsistent pipetting</td>
<td>Use calibrated pipettes and ensure accurate pipetting</td>
</tr>
<tr>
<td></td>
<td>Inconsistent sample preparation or storage</td>
<td>Ensure consistent sample preparation and optimal sample storage conditions (eg. minimize freeze/thaws cycles)</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of ELISA kit</td>
<td>Store all reagents as recommended. Please note all reagents may not have identical storage requirements.</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. Serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
</tbody>
</table>

For further technical questions please do not hesitate to contact us by email (technical@abcam.com) or phone (select “contact us” on www.abcam.com for the phone number for your region).
UK, EU and ROW
Email: technical@abcam.com
Tel: +44 (0)1223 696000
www.abcam.com

US, Canada and Latin America
Email: us.technical@abcam.com
Tel: 888-77-ABCAM (22226)
www.abcam.com

China and Asia Pacific
Email: hk.technical@abcam.com
Tel: 108008523689 (中國聯通)
www.abcam.cn

Japan
Email: technical@abcam.co.jp
Tel: +81-(0)3-6231-0940
www.abcam.co.jp

Copyright © 2012 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.