ab124538 –

Cytochrome-c oxidase
(Complex IV)

Human Profiling ELISA Kit

Instructions for Use

For the measurement of cytochrome-c oxidase (Complex IV) in human samples

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Introduction 3
2. Assay Summary 5
3. Kit Contents 6
4. Storage and Handling 6
5. Additional Materials Required 7
6. Preparation of Reagents 7
7. Sample Preparation 8
8. Control Sample Dilution Series Preparation 11
9. Assay Procedure 12
10. Data Analysis 15
11. Specificity 17
12. Troubleshooting 20
1. Introduction

Principle: ab124538 Cytochrome-c oxidase (Complex IV) human profiling kit is an in vitro enzyme-linked immunosorbent assay (ELISA) for the comparison of cytochrome-c oxidase levels or profile in cell and tissue lysates. The assay employs a human cytochrome-c oxidase specific capture antibody coated onto microplate well strips. Samples are pipetted into the wells and cytochrome-c oxidase present in the sample is bound to the wells by the immobilized antibody. The wells are washed and an anti-cytochrome-c oxidase detector antibody is added. After washing away unbound detector antibody, an HRP-conjugated secondary antibody specific for the detector antibody is pipetted into the wells. The wells are again washed, an HRP substrate solution (TMB) is added to the wells and color develops in proportion to the amount of cytochrome-c oxidase bound. The developing blue color is measured at 600 nm. Optionally the reaction can be stopped by adding hydrochloric acid which changes the color from blue to yellow and the intensity can be measured at 450 nm.
Background: Cytochrome-c oxidase (Complex IV) is the forth enzyme of the oxidative phosphorylation (OXPHOS) system within the mitochondrial inner membrane. Cytochrome-c oxidase is a large protein complex of approximately 200,000 MW made up of 13 different subunits. Three catalytic subunits I,II, and III are encoded on mitochondrial DNA (mtDNA). All other subunits are encoded by nuclear genomic DNA, made in the cytosol, and translocated into the organelle for assembly at the inner membrane. Complex IV catalyses the pumping of protons across the inner membrane and the transfer of electrons to the terminal acceptor oxygen (O_2) making water. Several cytochrome-c oxidase subunits have isoforms present in different tissues which subtly regulate enzymatic activity. Isoform expression or switching is likely in response to intracellular oxygen concentration.

Mutations in mtDNA, or nuclear DNA genes encoding cytochrome-c oxidase subunits or assembly factors are a common cause of genetic OXPHOS defects. Additionally several studies have correlated the hypometabolism seen in Alzheimer’s disease with a decrease in cytochrome-c oxidase enzyme levels.
2. Assay Summary

Equilibrate all reagents to room temperature. Prepare all the reagents, and samples as instructed.

Add 50 µL sample to each well used. Incubate 2 hours at room temperature.

Aspirate and wash each well two times. Add 50 µL prepared detector antibody to each well. Incubate 1 hour at room temperature.

Aspirate and wash each well two times. Add 50 µL prepared HRP label. Incubate 1 hour at room temperature.

Aspirate and wash each well three times. Add 100 µL TMB Development Solution to each well. Immediately record the color development with elapsed time at 600 nm for 15 minutes. Alternatively add a Stop solution at a user-defined time and read at 450 nm.
3. Kit Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>20X Buffer</td>
<td>20 mL</td>
</tr>
<tr>
<td>Extraction Buffer</td>
<td>15 mL</td>
</tr>
<tr>
<td>10X Blocking Buffer</td>
<td>6 mL</td>
</tr>
<tr>
<td>TMB Development Solution</td>
<td>12 mL</td>
</tr>
<tr>
<td>10X Cytochrome Oxidase Detector Antibody</td>
<td>1 mL</td>
</tr>
<tr>
<td>10X HRP Label</td>
<td>1 mL</td>
</tr>
<tr>
<td>Cytochrome Oxidase Microplate</td>
<td>1</td>
</tr>
<tr>
<td>(12 x 8 antibody coated well strips)</td>
<td></td>
</tr>
</tbody>
</table>

4. Storage and Handling

Store all components at 4°C. This kit is stable for 6 months from receipt. Unused microplate strips should be returned to the pouch containing the desiccant and resealed.
5. Additional Materials Required

- Microplate reader capable of measuring absorbance at 600 nm (or 450 nm after addition of Stop solution - not supplied).
- Method for determining protein concentration (BCA assay recommended).
- Deionized water
- Multi and single channel pipettes
- PBS (1.4 mM KH$_2$PO$_4$, 8 mM Na$_2$HPO$_4$, 140 mM NaCl, 2.7 mM KCl, pH 7.3)
- Tubes for standard dilution
- Stop solution (optional) – 1N hydrochloric acid
- Optional plate shaker for all incubation steps
- Plate cover or seals

6. Preparation of Reagents

6.1 Equilibrate all reagents to room temperature (18-25°C) prior to use.

6.2 Prepare 1X Wash Buffer by adding 20 mL 20X Buffer to 380 mL nanopure water. Mix gently and thoroughly.
6.3 Prepare 1X Incubation Buffer by adding 6 mL 10X Blocking Buffer to 54 mL 1X Wash Buffer. Unused 1X Incubation buffer may be stored at -20°C for 6 months after performing assay. Mix gently and thoroughly.

6.4 Prepare the 1X Cytochrome Oxidase Detector Antibody by diluting the 10X Cytochrome Oxidase Detector Antibody 10-fold with 1X Incubation Buffer immediately prior to use. Prepare 0.5 mL for each 8 well strip used.

6.5 Prepare the 1X HRP label by diluting the stock 10X HRP Label 10-fold with 1X Incubation Buffer prior to use. Prepare 0.5 mL for each 8 well strip used.

7. Sample Preparation

Note: Extraction buffer can be supplemented with phosphatase inhibitors, PMSF and protease inhibitor cocktail prior to use. Supplements should be used according to manufacturer’s instructions.

7.1 Cell lysates.

7.1.1 Collect non adherent cells by centrifugation or scrape to collect adherent cells from the culture flask. Typical centrifugation conditions for cells are 500 x g for 10 min at 4°C.

7.1.2 Rinse cells twice with PBS.

7.1.3 Solubilize cell pellet at 2x10^7/mL in Extraction Buffer.
7.1.4 Incubate on ice for 20 minutes. Centrifuge at 16,000 x g for 20 minutes at 4°C. Transfer the supernatants into clean tubes and discard the pellets. Assay samples immediately or aliquot and store at -80°C for 6 months. The sample protein concentration in the extract may be quantified using a protein assay.

7.2 Tissue lysates.

7.2.1 Tissue lysates are typically prepared by homogenization of tissue that is first minced and thoroughly rinsed in PBS to remove blood (dounce homogenizer recommended).

7.2.2 Suspend the homogenate to 25 mg/mL in PBS.

7.2.3 Solubilize the homogenate by adding 4 volumes of Extraction Buffer to a sample concentration of 5 mg/mL.

7.2.4 Incubate on ice for 20 minutes. Centrifuge at 16,000 x g, for 20 minutes at 4°C. Transfer the supernatants into clean tubes and discard the pellets. Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.
7.3 Sub-cellular organelle lysates e.g. mitochondria.

7.3.1 Prepare the organelle sample by, for example, sub-cellular fractionation.

7.3.2 Pellet the sample.

7.3.3 Solubilize the pellet by adding 9 volumes Extraction Buffer.

7.3.4 Incubate on ice for 20 minutes. Centrifuge at 16,000 x g for 20 minutes at 4°C. Transfer the supernatants into clean tubes and discard the pellets. Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.

The sample should be diluted to within the working range of the assay in 1X Incubation Buffer. As a guide, typical ranges of sample concentration for commonly used sample types are shown below in Data Analysis.
8. Control Sample Dilution Series Preparation

Note: It is strongly recommended to prepare a dilution series of control (normal) material. The relative levels or profile of Complex IV in unknown samples can be interpolated from within this control sample series.

8.1. To create a dilution series of control sample, label a series of tubes #2-7. Add 150 µL 1X Incubation buffer to each of tubes #2 through #7.

8.2. Prepare all samples by detergent extraction as described. Dilute the control sample lysate to 1 mg/mL in 1X Incubation buffer, label this tube #1. Undiluted control sample can be frozen at -80°C.

8.3. Transfer 150 µL from tube #1 to tube #2. Mix thoroughly. With a fresh pipette tip transfer 150 µL from #2 to #3.

8.4. Repeat serial dilution as in step 8.3 for Tubes #3 through #7. Use 1X Incubation buffer as the zero sample tube labeled #8. Use a fresh dilution series for each assay.
9. Assay Procedure

Bring all reagents and samples to room temperature prior to use. It is recommended all samples and standards be assayed in duplicate.

9.1. Prepare all reagents, control and unknown samples as directed in the previous sections.

9.2. Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, and reseal.

9.3. Add 50 µL of each diluted sample per well. It is recommended to include a dilution series of a control (normal) sample as a reference. Also include a 1X Incubation buffer as a zero standard.

9.4. Cover/seal the plate and incubate for 2 hours at room temperature. If available use a plate shaker for all incubation steps at 300 rpm.
9.5. Aspirate each well and wash, repeat this once more for a total of two washes. Wash by aspirating or decanting from wells then dispensing 300 μL 1X Wash buffer into each well as described above. Complete removal of liquid at each step is essential to good performance. After the last wash, remove the remaining buffer by aspiration or decanting. Invert the plate and blot it against clean paper towels to remove excess liquid.

9.6. Immediately prior to use prepare sufficient (0.5 mL/strip used) 1X Cytochrome Oxidase Detector Antibody in 1X Incubation buffer. Add 50 μL 1X Cytochrome Oxidase Detector antibody to each well used. Cover/seal the plate and incubate for 1 hour at room temperature. If available use a plate shaker for all incubation steps at 300 rpm.

9.7. Repeat the aspirate/wash procedure above.

9.8. Immediately prior to use prepare sufficient (0.5 mL/strip used) 1X HRP label in 1X Incubation buffer. Add 50 μL 1X HRP label to each well used. Cover/seal the plate and incubate for 1 hour at room temperature. If available use a plate shaker for all incubation steps at 300 rpm.

9.9. Repeat the aspirate/wash procedure above, however, performing a total of three washes.

9.10. Add 100 μL TMB Development Solution to each empty well and immediately record the blue color development
with elapsed time in the microplate reader prepared with the following settings:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Kinetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength:</td>
<td>600 nm</td>
</tr>
<tr>
<td>Time:</td>
<td>up to 15 min.</td>
</tr>
<tr>
<td>Interval:</td>
<td>20 sec. - 1 min.</td>
</tr>
<tr>
<td>Shaking:</td>
<td>Shake between readings</td>
</tr>
</tbody>
</table>

Alternative—In place of a kinetic reading, at a *user defined*, time record the endpoint OD data at (i) 600 nm or (ii) stop the reaction by adding 100 µL stop solution (1N HCl) to each well and record the OD at 450 nm.

9.11. Analyze the data as described below.
10. Data Analysis

Average duplicate control sample dilution series readings and plot against their concentrations after subtracting the zero standard reading. Draw the best smooth curve through these points to construct a standard curve. Most plate reader software or graphing software can plot these values and curve fit. A four parameter algorithm (4PL) usually provides the best fit, though other equations can be examined to see which provides the most accurate (e.g. linear, semi-log, log/log, 4 parameter logistic). Read the relative Complex IV concentrations for unknown samples from the control curve plotted. Samples producing signals greater than that of the highest control should be further diluted in 1X Incubation buffer and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.

TYPICAL SAMPLE RANGE - For demonstration only.

Figure 1. Example control sample curve.
TYPICAL SAMPLE RANGE

Typical working ranges for cell and tissue extracts

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultured cell lysate</td>
<td>0.02 – 1 mg/mL</td>
</tr>
<tr>
<td>Tissue homogenate</td>
<td>0.005 – 0.25 mg/mL</td>
</tr>
</tbody>
</table>

SENSITIVITY

Determined minimum detectable dose:

20 µg/mL for cultured whole cell lysates e.g. HepG2 of fibroblasts.

REPRODUCIBILITY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra (n=6)</td>
<td>5.6</td>
</tr>
<tr>
<td>Inter (n=6)</td>
<td>10.9</td>
</tr>
</tbody>
</table>
11. Specificity

Species – human. Rat and mouse samples are not appropriate, other species are untested.

EXPERIMENTAL DATA

Drug induced mitochondrial toxicity is a well recognized phenomenon. Two examples of which are the inhibition of mitochondrial DNA replication by nucleoside analogs reverse transcriptase inhibitors (NARTI) and the inhibition of mitochondrial protein expression by inhibitors of the mitochondrial ribosome (e.g. antibiotics). The effects of a drug from each of these classes on the assembly of OXPHOS enzymes containing mtDNA encoded components (Complexes I, III, IV and V) versus the only entirely nuclear encoded enzyme SDH (Complex II) are shown below in Figure 2.
Figure 2. Human HepG2 cells were cultured in each drug for 6 days to ensure a significant effect on mitochondrial DNA replication and mitochondrial protein translation, respectively. (A) The NARTI Zalcitabine (ddC) reduced mitochondrial DNA levels and hence
mitochondrial protein expression. As a consequence the assembly of Complexes I, III and IV were severely affected. Note that loss of the two small mitochondrial DNA encoded subunits of Complex V (ATP synthase) does not affect overall assembly. Interestingly an increase in Complex II was induced as a consequence of I, III, IV loss possibly to up regulate mitochondrial citric acid cycle function. (B) The antibiotic chloramphenicol inhibited mitochondrial protein translation and assembly of Complexes I and IV but had no significant effect on Complex II, III or V.
12. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard Curve</td>
<td>Inaccurate Pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Low SDH concentration in sample</td>
<td>Use appropriate positive control. Human cultured cells such a as HeLa or HepG2 are recommended.</td>
</tr>
<tr>
<td></td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; change to overnight standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store assay components 4 °C. Keep substrate solution protected from light</td>
</tr>
</tbody>
</table>
UK, EU and ROW
Email: technical@abcam.com
Tel: +44 (0)1223 696000
www.abcam.com

US, Canada and Latin America
Email: us.technical@abcam.com
Tel: 888-77-ABCAM (22226)
www.abcam.com

China and Asia Pacific
Email: hk.technical@abcam.com
Tel: 108008523689 (中國聯通)
www.abcam.cn

Japan
Email: technical@abcam.co.jp
Tel: +81-(0)3-6231-0940
www.abcam.co.jp

Copyright © 2012 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.