ab136957
Hexokinase Assay Kit
(Colorimetric)

Instructions for Use

For the sensitive and accurate measurement of hexokinase in serum, animal tissue and cell culture samples (adherent and suspension).

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND ... 2
2. ASSAY SUMMARY ... 3

GENERAL INFORMATION
3. PRECAUTIONS ... 4
4. STORAGE AND STABILITY 4
5. MATERIALS SUPPLIED 5
6. MATERIALS REQUIRED, NOT SUPPLIED 5
7. LIMITATIONS ... 6
8. TECHNICAL HINTS ... 7

ASSAY PREPARATION
9. REAGENT PREPARATION 8
10. STANDARD PREPARATION 10
11. SAMPLE PREPARATION 11

ASSAY PROCEDURE and DETECTION
12. ASSAY PROCEDURE and DETECTION 13

DATA ANALYSIS
13. CALCULATIONS ... 15
14. TYPICAL DATA .. 16

RESOURCES
15. QUICK ASSAY PROCEDURE 18
16. TROUBLESHOOTING 19
17. FAQ ... 21
18. INTERFERENCES .. 23
19. NOTES .. 24
INTRODUCTION

1. BACKGROUND

Hexokinase Assay kit (Colorimetric) (ab136957), glucose is converted to glucose-6-phosphate by hexokinase; the glucose-6-phosphate is oxidized by glucose-6-phosphate dehydrogenase to form NADH, which reduces a colorless probe to a colored product with strong absorbance at 450 nm. The assay is simple, sensitive and rapid and can detect hexokinase activity even less than 0.1 mU/well.

Hexokinases (HK) are found in many organisms including bacteria, plants and mammals and play an important role in glucose metabolism. Hexokinases phosphorylate glucose and generate glucose-6-phosphate for glycolysis. Hexokinases have four isoforms (HKI, II, III and IV). HK-I, HK-II and HK-III have low Km, while HK-IV has 100 fold high Km. Hexokinase deficiency leads to severe human diseases such as X-linked muscular dystrophy and a rare autosomal recessive hemolytic anemia.

However, increased hexokinase activity is detected in various human tumors and is associated with metastasis. Early detection of abnormal hexokinase activity is crucial for diagnosis, prediction and treatment of the disease.

![Diagram of hexokinase reaction](image-url)
INTRODUCTION

2. **ASSAY SUMMARY**

- Standard curve preparation
- Sample preparation
- Add reaction mix and incubate at RT for 20-60 mins
- Measure optical density (OD450 nm) in a kinetic mode at T_1 and T_2
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at -20ºC in the dark immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in section 5.

Aliquot components in working volumes before storing at the recommended temperature. **Reconstituted components are stable for 2 months.**
5. MATERIALS SUPPLIED

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
<th>Storage Condition (After Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>25 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Hexokinase Substrate</td>
<td>1 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Coenzyme (Lyophilized)</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Enzyme Mix (Lyophilized)</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Developer (Lyophilized)</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>NADH Standard (Lyophilized)</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Positive Control (Lyophilized)</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>

6. MATERIALS REQUIRED, NOT SUPPLIED

These materials are not included in the kit, but will be required to successfully perform this assay:

- MilliQ water or other type of double distilled water (ddH₂O)
- PBS
- Colorimetric microplate reader - equipped with filter for OD450 nm
- 96 well plate: clear plates for colorimetric assay
- Microcentrifuge
- Pipettes and pipette tips
- Heat block or water bath
- Vortex
- Dounce homogenizer or pestle (if using tissue)
7. LIMITATIONS

• Assay kit intended for research use only. Not for use in diagnostic procedures.

• Do not use kit or components if it has exceeded the expiration date on the kit labels.

• Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.
8. **TECHNICAL HINTS**

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.

- Keep enzymes, heat labile components and samples on ice during the assay.

- Make sure all buffers and solutions are at room temperature before starting the experiment.

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.

- Avoid foaming or bubbles when mixing or reconstituting components.

- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.

- Ensure plates are properly sealed or covered during incubation steps.

- Ensure complete removal of all solutions and buffers from tubes or plates during wash steps.

- Make sure you have the right type of plate for your detection method of choice.

- Make sure the heat block/water bath and microplate reader are switched on.
9. **REAGENT PREPARATION**

- Briefly centrifuge small vials at low speed prior to opening.

9.1 **Assay Buffer:**

 Ready to use as supplied. Equilibrate to room temperature before use. Store at -20°C.

9.2 **Hexokinase Substrate:**

 Ready to use as supplied. Aliquot substrate so that you have enough volume to perform the desired number of assays. Store at -20°C.

9.3 **Coenzyme:**

 Reconstitute with 220 µL Assay Buffer to generate 0.2 M solution. Aliquot co-enzyme so that you have enough volume to perform the desired number of assays. Store at -20°C. Keep on ice while in use.

9.4 **Enzyme Mix:**

 Reconstitute with 220 µL Assay Buffer. Pipette up and down to dissolve completely. Aliquot enzyme mix so that you have enough volume to perform the desired number of assays. Store at -20°C. Avoid repeated freeze/thaw cycles. Keep on ice while in use. Use within 2 months.

9.5 **Developer:**

 Reconstitute with 220 µL dH₂O. Pipette up and down to dissolve completely. Aliquot developer so that you have enough volume to perform the desired number of assays. Store at -20°C.

9.6 **NADH Standard:**

 Reconstitute with 400 µL dH₂O to generate 1.25 mM (1.25 nmol/µL) NADH Standard solution. Aliquot standard so that you have enough volume to perform the desired number of assays. Store at –20°C. Keep on ice while in use.
9.7 **Positive Control:**

Reconstitute with 100 µL Assay Buffer and mix thoroughly. Aliquot positive control so that you have enough volume to perform the desired number of assays. Store at –20°C.

Prior to use in the assay, dilute Positive control solution 1:99 in Assay Buffer.
10. **STANDARD PREPARATION**

- Always prepare a fresh set of standards for every use.
- Diluted standard solution is unstable and must be used within 4 hours.

10.1 Using 1.25 mM NADH Standard, prepare standard curve dilution as described in the table in a microplate or microcentrifuge tubes:

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume of Standard (µL)</th>
<th>Assay Buffer (µL)</th>
<th>Final volume standard in well (µL)</th>
<th>End [NADH] in well</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>150</td>
<td>50</td>
<td>0 nmol/well</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>144</td>
<td>50</td>
<td>2.5 nmol/well</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>138</td>
<td>50</td>
<td>5.0 nmol/well</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>132</td>
<td>50</td>
<td>7.5 nmol/well</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>126</td>
<td>50</td>
<td>10.0 nmol/well</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>120</td>
<td>50</td>
<td>12.5 nmol/well</td>
</tr>
</tbody>
</table>

Each dilution has enough amount of standard to set up duplicate readings (2 x 50 µL).
11. **SAMPLE PREPARATION**

General Sample information:

- We recommend performing several dilutions of your sample to ensure the readings are within the standard value range.
- We recommend that you use fresh samples. If you cannot perform the assay at the same time, we suggest that you complete the Sample Preparation step before storing the samples. Alternatively, if that is not possible, we suggest that you snap freeze cells or tissue in liquid nitrogen upon extraction and store the samples immediately at -80°C. When you are ready to test your samples, thaw them on ice. Be aware however that this might affect the stability of your samples and the readings can be lower than expected.

11.1 **Cell (adherent or suspension) samples:**

11.1.1 Harvest the amount of cells necessary for each assay (initial recommendation = 1 x 10^6 cells).

11.1.2 Wash cells with cold PBS.

11.1.3 Resuspend cells in 200 µL of ice cold Assay Buffer.

11.1.4 Homogenize cells quickly by pipetting up and down a few times.

11.1.5 Centrifuge 5 minutes at 4°C at 12,000 rpm using a cold microcentrifuge to remove any insoluble material.

11.1.6 Collect supernatant and transfer to a clean tube.

11.1.7 Keep on ice.

11.2 **Tissue samples:**

11.2.1 Harvest the amount of tissue necessary for each assay (initial recommendation = 10 mg).

11.2.2 Wash tissue in cold PBS.

11.2.3 Resuspend tissue in 200 µL ice cold Assay Buffer.
11.2.4 Homogenize tissue with a Dounce homogenizer sitting on ice, with 10 – 15 passes.

11.2.5 Centrifuge 5 minutes at 4°C at 12,000 rpm using a cold microcentrifuge to remove any insoluble material.

11.2.6 Collect supernatant and transfer to a clean tube.

11.2.7 Keep on ice.

11.3 Serum samples:

Serum samples can be tested directly by adding sample to the microplate wells. Bring volumes up to 50 µL with Assay Buffer.

However, to find the optimal values and ensure your readings will fall within the standard values, we recommend performing several dilutions of the sample (1/2 – 1/5 – 1/10).

NOTE: We suggest using different volumes of sample to ensure readings are within the Standard Curve range.
12. ASSAY PROCEDURE and DETECTION

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

12.1 Set up Reaction wells:
- Standard wells = 50 µL standard dilutions.
- Sample wells = 1 – 50 µL (40 µg) samples (adjust volume to 50 µL/well with Assay Buffer).
- Sample Background wells = 1 – 50 µL (40 µg) samples (adjust volume to 50 µL/well with Assay Buffer).
- Positive Control wells = 1 – 50 µL (adjust volume to 50 µL/well with Assay Buffer).

12.2 Reaction Mix:
Prepare Reaction Mix for each reaction

<table>
<thead>
<tr>
<th>Component</th>
<th>Colorimetric Reaction Mix (µL)</th>
<th>Background Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>Enzyme Mix</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Developer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Coenzyme</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hexokinase Substrate</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Mix enough reagents for the number of assays (samples, standards and background control) to be performed. Prepare a master mix of the Reaction Mix to ensure consistency. We recommend the following calculation:

X µL component x (Number samples + standards +1).

12.3 Add 50 µL of Reaction Mix to each standard, positive control and sample wells.

12.4 Add 50 µL of Background Reaction Mix to each sample background control sample wells.
12.5 Incubate at room temperature for 20 - 60 minutes protected from light.

12.6 Measure output on a microplate reader.

- Colorimetric assay: measure OD 450 nm.

NOTE: Incubation time depends on the Hexokinase activity in the samples. We recommend measuring the OD in a kinetic mode, and choose two time points \((T_1 \text{ and } T_2)\) in the linear range to calculate the hexokinase activity of the samples. The NADH standard curve can read in endpoint mode i.e. at the end of incubation time.
13. **CALCULATIONS**

- Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

13.1 Average the duplicate reading for each standard and sample.

13.2 Subtract the sample background from all standard and sample readings if applicable.

13.3 Subtract the mean absorbance value of the blank (Standard #1) from all standard and sample readings. This is the corrected absorbance.

13.4 Plot the corrected absorbance values for each standard as a function of the final concentration of NADH.

13.5 Draw the best smooth curve through these points to construct the standard curve. Most plate reader software or Excel can plot these values and curve fit. Calculate the trendline equation based on your standard curve data (use the equation that provides the most accurate fit).

13.6 Calculate the hexokinase activity of the test sample:

\[\Delta A = A_2 - A_1 \]

13.7 Use the \(\Delta A \) to obtain B nmol of NADH generated by hexokinase during the reaction time (\(\Delta T = T_2 - T_1 \)).

13.8 Activity of hexokinase (nmol/min/mL or mU/mL) in the test samples is calculated as:

\[\text{Sample Hexokinase Activity} = \frac{B}{(\Delta T \times V)} \times \text{Dilution Factor} \]
Where:
\[\Delta A = A_2 - A_1. \]
\[B = \text{NADH amount from standard curve (nmol)}. \]
\[\Delta T = \text{reaction time (min)} \ (\Delta T = T_2 - T_1). \]
\[V = \text{sample volume added into the reaction well (mL)}. \]

Unit Definition: One unit of hexokinase is the amount of enzyme that will generate 1.0 \(\mu \)mol of NADH per min at pH 8 at room temperature.

14. **TYPICAL DATA**

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Typical NADH standard calibration curve using endpoint colorimetric reading.](image)
Figure 2: Hexokinase Activity measured in cell lysates showing quantity (nmol) per 1 mln cells after 35 minutes of incubation.
Figure 3: Hexokinase Activity measured in tissue lysates showing quantity (nmol) per mg of extracted protein after 35 minutes of incubation.
15. **QUICK ASSAY PROCEDURE**

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when performing the assay for the first time.

- Prepare standard, developer, coenzyme, and enzyme mix (aliquot if necessary); get equipment ready.
- Prepare appropriate standard curve.
- Prepare samples in duplicate (find optimal dilutions to fit standard curve readings).
- Set up plate for standard (50 µL), samples (50 µL), positive control (50 µL) and background sample controls (50 µL).
- Prepare Reaction Mix (Number samples + standards + 1).

<table>
<thead>
<tr>
<th>Component</th>
<th>Colorimetric Reaction Mix (µL)</th>
<th>Background Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>Enzyme Mix</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Developer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Coenzyme</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hexokinase Substrate</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

- Add 50 µL Reaction Mix or Background Reaction mix to appropriate wells.
- Incubate plate at RT for 20-60 mins.
- Measure plate at OD 450nm.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay not working</td>
<td>Use of ice-cold buffer</td>
<td>Buffers must be at room temperature</td>
</tr>
<tr>
<td></td>
<td>Plate read at incorrect wavelength</td>
<td>Check the wavelength and filter settings of instrument</td>
</tr>
<tr>
<td></td>
<td>Use of a different 96-well plate</td>
<td>Colorimetric: Clear plates Fluorometric: black wells/clear bottom plate</td>
</tr>
<tr>
<td>Sample with erratic readings</td>
<td>Samples not deproteinized (if indicated on protocol)</td>
<td>Use PCA precipitation protocol for deproteinization</td>
</tr>
<tr>
<td></td>
<td>Cells/tissue samples not homogenized completely</td>
<td>Use Dounce homogenizer, increase number of strokes</td>
</tr>
<tr>
<td></td>
<td>Samples used after multiple freeze/thaw cycles</td>
<td>Aliquot and freeze samples if needed to use multiple times</td>
</tr>
<tr>
<td></td>
<td>Use of old or inappropriately stored samples</td>
<td>Use fresh samples or store at -80°C (after snap freeze in liquid nitrogen) till use</td>
</tr>
<tr>
<td></td>
<td>Presence of interfering substance in the sample</td>
<td>Check protocol for interfering substances; deproteinize samples</td>
</tr>
<tr>
<td>Lower/Higher readings in samples and Standards</td>
<td>Improperly thawed components</td>
<td>Thaw all components completely and mix gently before use</td>
</tr>
<tr>
<td></td>
<td>Allowing reagents to sit for extended times on ice</td>
<td>Always thaw and prepare fresh reaction mix before use</td>
</tr>
<tr>
<td></td>
<td>Incorrect incubation times or temperatures</td>
<td>Verify correct incubation times and temperatures in protocol</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Standard readings do not follow a linear pattern</td>
<td>Pipetting errors in standard or reaction mix</td>
<td>Avoid pipetting small volumes (< 5 µL) and prepare a master mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the tubes</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Always refer to dilutions on protocol</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Measured at incorrect wavelength</td>
<td>Check equipment and filter setting</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>Troubleshoot if it interferes with the kit</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/below the linear range</td>
<td>Concentrate/Dilute sample so it is within the linear range</td>
</tr>
</tbody>
</table>
17. FAQ

In measuring D-Glucose-rich sample (such as muscle), is there a possibility that the background control shows slightly higher values than the sample itself?

If there is higher NADH in the muscle sample than D-glucose, then background can be equivalent or higher. Since OD is measured in a kinetic mode, time points can be chosen within the linear regime such that background values are lower than D-glucose reactions. Sample volume in the well can also be optimized such that very high (~50 µL) volumes are not used. Low volumes will prevent saturation and will allow better distinction between sample and background.

What time should the standard curve be read at?

Standards should be read at end-point (at the highest timepoint for the sample readings).

Do hemolysed samples affect the assay?

Any particulate matter in suspension/turbidity affects absorbance measurements. Hemoglobin color or hemolysis in the sample can influence the OD measurements but typically OD 450nm is the brown/yellow range and hence red color does not influence much. We would suggest diluting the sample, removing the hemolyzed chunks and then using the sample

Does this kit measure activity of HK-1 or HK-2 or other isoforms also? What about muscle tissue?

This kit is based on function of the Hexokinase enzyme (conversion of glucose to glucose-6-phosphate is measured). This kit does not distinguish between the isoforms. HKI, HKII and HKIII have low Km, while HKIV has 100 fold high Km. Hence it is very likely that you will measure hexokinase activity from I, II and III and small contribution if any from HK IV depending on the relative amounts of these isoforms in your sample. HK-II is the predominant form in adipose and muscle
cells. HKII is insulin-sensitive. So if the samples are from adipose tissue or muscle you will measure HK-II activity.

What is the source of the positive control enzyme?

Our positive control is HK-II from Bacillus sp.

Can I use other hexose-sugars as substrates, e.g. fructose?

This kit assays hexokinase activity in a variety of samples. Theoretically hexokinases in general can phosphorylate hexose sugars including fructose which is then phosphorylated to fructose-6-P. Nevertheless, the primary substrate is glucose for these enzymes in mammalian cells. Hexokinase IV (fastest hexokinase) is actually a glucokinase meaning it acts on glucose to form G6P. It might be possible to use fructose as a substrate to test since NADH formed after phosphorylation reacts with the probe to generate color. But this depends on whether the sample has fructokinase activity or is mainly a glucokinase. The substrate provided in the kit is D-glucose.

What is the activity in the positive control?

The positive control is a purified enzyme and the specific activity changes from lot to lot. The positive control is provided to be used as a benchmark sample to make sure all components of the kit are working. The positive control is not to be used to compare activity in the sample.
18. **INTERFERENCES**

These chemicals or biological materials will cause interferences in this assay causing compromised results or complete failure:

- NADH.
19. NOTES
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 108008523689 (中國聯通)

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2015 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.