Instructions for Use

For the quantitative measurement of Human Prekallikrein (Fletcher Factor) concentrations in plasma, serum, saliva, milk, cerebrospinal fluid and cell culture supernatants.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND 2
2. ASSAY SUMMARY 3
3. PRECAUTIONS 4

GENERAL INFORMATION
4. STORAGE AND STABILITY 4
5. MATERIALS SUPPLIED 4
6. MATERIALS REQUIRED, NOT SUPPLIED 5
7. LIMITATIONS 5
8. TECHNICAL HINTS 5

ASSAY PREPARATION
9. REAGENT PREPARATION 7
10. STANDARD PREPARATIONS 10
11. SAMPLE PREPARATION 13
12. PLATE PREPARATION 14

ASSAY PROCEDURE
13. ASSAY PROCEDURE 15

DATA ANALYSIS
14. CALCULATIONS 17
15. TYPICAL DATA 18
16. TYPICAL SAMPLE VALUES 19
17. ASSAY SPECIFICITY 20

RESOURCES
18. TROUBLESHOOTING 21
19. NOTES 23
INTRODUCTION

1. BACKGROUND

Abcam’s Prekallikrein and Kallikrein Human in vitro ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of Prekallikrein and Kallikrein levels in plasma, serum, saliva, milk, cerebrospinal fluid and cell culture supernatants.

A Prekallikrein specific antibody has been precoated onto 96-well plates and blocked. Standards or test samples are added to the wells and subsequently a Prekallikrein specific biotinylated detection antibody is added and then followed by washing with wash buffer. Streptavidin-Peroxidase Conjugate is added and unbound conjugates are washed away with wash buffer. TMB is then used to visualize Streptavidin-Peroxidase enzymatic reaction. TMB is catalyzed by Streptavidin-Peroxidase to produce a blue color product that changes into yellow after adding acidic stop solution. The density of yellow coloration is directly proportional to the amount of Prekallikrein and Kallikrein captured in plate.

Prekallikrein (PK), also known as Fletcher factor, is an 88 kDa serine protease that mostly circulates as a complex with high-molecular-weight kininogen. Human plasma Prekallikrein is synthesized as a precursor with a signal peptide of 19 amino acids and the mature circulating protein is a single-chain polypeptide of 619 amino acids. It participates in the surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation. When cleaved by Factor XIIa, Prekallikrein is converted into kallikrein with an N-terminal heavy chain (371 amino acids) and a catalytic light chain (248 amino acids) held together by a disulfide bond. Plasma kallikrein liberates kinins (bradykinin and kallidin) from the kininogens to regulate vasodilation and inflammation. Prekallikrein deficient patients have prolonged activated partial thromboplastin time without having any bleeding disorder.
INTRODUCTION

2. ASSAY SUMMARY

Primary capture antibody
Prepare all reagents, samples and standards as instructed.

Sample
Add standard or sample to each well used. Incubate at room temperature.

Primary detector antibody
Wash and add prepared biotin antibody to each well. Incubate at room temperature.

Streptavidin Label
Wash and add prepared Streptavidin-Peroxidase Conjugate. Incubate at room temperature.

Substrate Colored product
Add Chromogen Substrate to each well. Incubate at room temperature. Add Stop Solution to each well. Read immediately.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at 4°C immediately upon receipt, apart from the SP Conjugate & Biotinylated Antibody, which should be stored at -20°C.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in sections 9 & 10.

5. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prekallikrein Microplate (12 x 8 well strips)</td>
<td>96 Wells</td>
<td>4°C</td>
</tr>
<tr>
<td>Prekallikrein Standard</td>
<td>1 vial</td>
<td>4°C</td>
</tr>
<tr>
<td>10X Diluent N Concentrate</td>
<td>30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Biotinylated Human Prekallikrein Antibody</td>
<td>1 vial</td>
<td>-20°C</td>
</tr>
<tr>
<td>100X Streptavidin-Peroxidase Conjugate (SP Conjugate)</td>
<td>80 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Chromogen Substrate</td>
<td>8 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>20X Wash Buffer concentrate</td>
<td>2 x 30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Sealing Tapes</td>
<td>3</td>
<td>N/A</td>
</tr>
</tbody>
</table>
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- 1 Microplate reader capable of measuring absorbance at 450 nm.
- Precision pipettes to deliver 1 µL to 1 mL volumes.
- Adjustable 1-25 mL pipettes for reagent preparation.
- 100 mL and 1 liter graduated cylinders.
- Absorbent paper.
- Distilled or deionized water.
- Log-log graph paper or computer and software for ELISA data analysis.
- 8 tubes to prepare standard or sample dilutions.

7. **LIMITATIONS**

- Do not mix or substitute reagents or materials from other kit lots or vendors.
8. TECHNICAL HINTS

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Complete removal of all solutions and buffers during wash steps.
- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
9. REAGENT PREPARATION

Equilibrate all reagents to room temperature (18-25°C) prior to use. Prepare fresh reagents immediately prior to use. If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.

9.1 1X Diluent N

Dilute the 10X Diluent N Concentrate 1:10 with reagent grade water. Mix gently and thoroughly. *Store for up to 1 month at 4°C.*

9.2 1X Wash Buffer

Dilute the 20X Wash Buffer Concentrate 1:20 with reagent grade water. Mix gently and thoroughly.

9.3 1X Biotinylated Prekallikrein Detector Antibody

9.3.1 The stock Biotinylated Prekallikrein Antibody must be diluted with 1X Diluent N according to the label concentration to prepare 1X Biotinylated Prekallikrein Detector Antibody for use in the assay procedure. Observe the label for the “X” concentration on the vial of Prekallikrein Antibody.

9.3.2 Calculate the necessary amount of 1X Diluent N to dilute the Biotinylated Prekallikrein Antibody to prepare a 1X Biotinylated Prekallikrein Detector Antibody solution for use in the assay procedure according to how many wells you wish to use and the following calculation:

<table>
<thead>
<tr>
<th>Number of Wells Strips</th>
<th>Number of Wells</th>
<th>((V_T)) Total Volume of 1X Biotinylated Detector Antibody (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>1,760</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>2,640</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>3,520</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>4,400</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>5,280</td>
</tr>
</tbody>
</table>

Any remaining solution should be frozen at -20°C.
Where:

C_S = Starting concentration (X) of stock Biotinylated Prekallikrein Antibody (variable)

C_F = Final concentration (always = 1X) of 1X Biotinylated Prekallikrein Detector Antibody solution for the assay procedure

V_T = Total required volume of 1X Biotinylated Prekallikrein Detector Antibody solution for the assay procedure

V_A = Total volume of (X) stock Biotinylated Prekallikrein Antibody

V_D = Total volume of 1X Diluent N required to dilute (X) stock Biotinylated Prekallikrein Antibody to prepare 1X Biotinylated Detector Antibody solution for assay procedures

Calculate the volume of (X) stock Biotinylated Antibody required for the given number of desired wells:

$$V_A = \frac{C_F}{C_S} \times V_T$$

Calculate the final volume of 1X Diluent N required to prepare the 1X Biotinylated Prekallikrein Detector Antibody:

$$V_D = V_T - V_A$$

Example:

NOTE: This example is for demonstration purposes only. Please remember to check your antibody vial for the actual concentration of antibody provided.

C_S = 50X Biotinylated Prekallikrein Antibody stock

C_F = 1X Biotinylated Prekallikrein Detector Antibody solution for use in the assay procedure

V_T = 3,520 µL (8 well strips or 64 wells)

(1X/50X) * 3,520 µL = 70.4 µL

3,520 µL – 70.4 µL = 3,450 µL

V_A = 70.4 µL total volume of (X) stock Biotinylated Prekallikrein Antibody required

V_D = 3,450 µL total volume of 1X Diluent N required to dilute the 50X stock Biotinylated Antibody to prepare 1X Biotinylated Prekallikrein Detector Antibody solution for assay procedures
9.3.3 First spin the Biotinylated Prekallikrein Antibody vial to collect the contents at the bottom.

9.3.4 Add calculated amount V_A of stock Biotinylated Prekallikrein Antibody to the calculated amount V_D of 1X Assay Diluent N. Mix gently and thoroughly.

9.4 **1X SP Conjugate**

Spin down the 100X Streptavidin-Peroxidase Conjugate (SP Conjugate) briefly and dilute the desired amount of the conjugate 1:100 with 1X Diluent N.

Any remaining solution should be frozen at -20°C.
10. STANDARD PREPARATIONS

- Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of standards for every use.
- Any remaining standard should be stored at -20°C after reconstitution and used within 30 days.
- This procedure prepares sufficient standard dilutions for duplicate wells.

10.1 Reconstitute the Prekallikrein Standard vial to prepare an 80 ng/mL Prekallikrein Standard #1:

10.1.1 First consult the Prekallikrein Standard vial to determine the mass of protein in the vial.

10.1.2 Calculate the appropriate volume of 1X Diluent N to add when resuspending the Prekallikrein Standard vial to produce an 80 ng/mL Prekallikrein Standard #1 by using the following equation:

\[
C_S = \text{Starting mass of Prekallikrein Standard (see vial label) (ng)}
\]

\[
C_F = 80 \text{ ng/mL Prekallikrein Standard #1 final required concentration}
\]

\[
V_D = \text{Required volume of 1X Diluent N for reconstitution (µL)}
\]

Calculate total required volume 1X Diluent N for resuspension:

\[
(C_S / C_F) \times 1,000 = V_D
\]

Example:

NOTE: This example is for demonstration purposes only. Please remember to check your standard vial for the actual amount of standard provided.

\[
C_S = 320 \text{ ng of Prekallikrein Standard in vial}
\]

\[
C_F = 80 \text{ ng/mL Prekallikrein Standard #1 final concentration}
\]

\[
V_D = \text{Required volume of 1X Diluent N for reconstitution}
\]

\[
(320 \text{ ng} / 80 \text{ ng/mL}) \times 1,000 = 4,000 \text{ µL}
\]
10.1.1 First briefly spin the Prekallikrein Standard Vial to collect the contents on the bottom of the tube.

10.1.2 Reconstitute the Prekallikrein Standard vial by adding the appropriate calculated amount V_D of 1X Diluent N to the vial to generate the 80 ng/mL Prekallikrein **Standard #1**. Mix gently and thoroughly.

10.2 Allow the reconstituted 80 ng/mL Prekallikrein **Standard #1** to sit for 10 minutes with gentle agitation prior to making subsequent dilutions.

10.3 Label seven tubes #2-8.

10.4 Add 120 µL of 1X Diluent N to tube #2 – 8.

10.5 To prepare **Standard #2**, add 120 µL of the **Standard #1** into tube #2 and mix gently.

10.6 To prepare **Standard #3**, add 120 µL of the **Standard #2** into tube #3 and mix gently.

10.7 Using the table below as a guide, prepare subsequent serial dilutions.

10.8 1X Diluent N serves as the zero standard, 0 ng/mL (tube #8).

Discover more at www.abcam.com
ASSAY PREPARATION

Standard Dilution Preparation Table

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume to Dilute (µL)</th>
<th>Volume Diluent N (µL)</th>
<th>Total Volume (µL)</th>
<th>Starting Conc. (ng/mL)</th>
<th>Final Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Step 10.1</td>
<td></td>
<td></td>
<td>800</td>
<td>80.0</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>120</td>
<td>120</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

1. Tube with blue solution
2. Tube with blue solution
3. Tube with blue solution
4. Tube with blue solution
5. Tube with blue solution
6. Tube with blue solution
7. Tube with blue solution
11. SAMPLE PREPARATION

11.1 Plasma
Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3,000 x g for 10 minutes and use supernatants. Dilute samples 1:4,000 with 1X Diluent N and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles. (EDTA or Heparin can also be used as an anticoagulant.)

11.2 Serum
Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3,000 x g for 10 minutes and remove serum. Dilute samples 1:4,000 into 1X Diluent N and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.3 Cell Culture Supernatants
Centrifuge cell culture media at 3,000 x g for 10 minutes at 4°C to remove debris. Collect supernatants and assay. Store samples at -20°C or below. Avoid repeated freeze-thaw cycles.

11.4 Saliva
Collect saliva using sample tube. Centrifuge samples at 800 x g for 10 minutes and assay. Store samples at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.5 Milk
Collect milk using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute milk samples 1:10 into 1X Diluent N and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
11.6 **Cerebrospinal Fluid**
Collect cerebrospinal fluid using sample tube. Centrifuge samples at 3,000 x g for 10 minutes. Dilute samples 1:10 into 1X Diluent N and assay. The undiluted samples can be stored at -80°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

12. **PLATE PREPARATION**
- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused well plate strips should be returned to the plate packet and stored at 4°C.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Well effects have not been observed with this assay. Contents of each well can be recorded on the template sheet included in the Resources section.
13. **ASSAY PROCEDURE**

- Equilibrate all materials and prepared reagents to room temperature (18 - 25°C) prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards and samples as instructed. Equilibrate reagents to room temperature before use. The assay is performed at room temperature (18-25°C).

13.2 Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccant inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.

13.3 Add 50 μL of Prekallikrein standard or sample per well. Cover wells with a sealing tape and incubate for two hours. Start the timer after the last sample addition.

13.4 Wash five times with 200 μL of 1X Wash Buffer manually. Invert the plate each time and decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid. If using a machine wash six times with 300 μL of 1X Wash Buffer and then invert the plate, decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid.

13.5 Add 50 μL of 1X Biotinylated Prekallikrein Detector Antibody to each well and incubate for one hour.

13.6 Wash microplate as described above.

13.7 Add 50 μL of 1X SP Conjugate to each well and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.

13.8 Wash microplate as described above.

13.9 Add 50 μL of Chromogen Substrate per well and incubate for about 15 minutes or till the optimal blue colour density
ASSAY PROCEDURE

develops. Gently tap plate to ensure thorough mixing and break the bubbles in the well with pipette tip.

13.10 Add 50 μL of Stop Solution to each well. The color will change from blue to yellow.

13.11 Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.
14. CALCULATIONS

Calculate the mean value of the duplicate or triplicate readings for each standard and sample. To generate a Standard Curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit. Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.
15. **TYPICAL DATA**

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Graph showing typical standard curve](image-url)
16. **TYPICAL SAMPLE VALUES**

SENSITIVITY –
The minimum detectable dose of Prekallikrein is typically ~1.2 ng/mL.

RECOVERY –
Standard Added Value: 5 – 40 ng/mL
Recovery %: 86 – 112.
Average Recovery %: 98

LINEARITY OF DILUTION –

<table>
<thead>
<tr>
<th>Plasma Dilution</th>
<th>Average % Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000x</td>
<td>92</td>
</tr>
<tr>
<td>4000x</td>
<td>99</td>
</tr>
<tr>
<td>8000x</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum Dilution</th>
<th>Average % Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000x</td>
<td>93</td>
</tr>
<tr>
<td>4000x</td>
<td>99</td>
</tr>
<tr>
<td>8000x</td>
<td>106</td>
</tr>
</tbody>
</table>

PRECISION –

<table>
<thead>
<tr>
<th>% CV</th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>8.9</td>
</tr>
</tbody>
</table>
17. ASSAY SPECIFICITY

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine</td>
<td>None</td>
</tr>
<tr>
<td>Bovine</td>
<td>None</td>
</tr>
<tr>
<td>Monkey</td>
<td>20</td>
</tr>
<tr>
<td>Mouse</td>
<td>None</td>
</tr>
<tr>
<td>Rat</td>
<td>None</td>
</tr>
<tr>
<td>Swine</td>
<td>None</td>
</tr>
<tr>
<td>Rabbit</td>
<td>None</td>
</tr>
<tr>
<td>Human</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proteins</th>
<th>% Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kallikrein</td>
<td>90</td>
</tr>
</tbody>
</table>

10% FBS in culture media will not affect the assay.
18. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Improper standard dilution</td>
<td>Confirm dilutions made correctly</td>
</tr>
<tr>
<td></td>
<td>Standard improperly reconstituted (if applicable)</td>
<td>Briefly spin vial before opening; thoroughly resuspend powder (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Standard degraded</td>
<td>Store sample as recommended</td>
</tr>
<tr>
<td></td>
<td>Curve doesn't fit scale</td>
<td>Try plotting using different scale</td>
</tr>
<tr>
<td>Incubation time too short</td>
<td>Target present below detection limits of assay</td>
<td>Try overnight incubation at 4°C</td>
</tr>
<tr>
<td></td>
<td>Precipitate can form in wells upon substrate addition when concentration of target is too high</td>
<td>Increase dilution factor of sample</td>
</tr>
<tr>
<td>Low signal</td>
<td>Using incompatible sample type (e.g. serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
<tr>
<td></td>
<td>Sample prepared incorrectly</td>
<td>Ensure proper sample preparation/dilution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Bubbles in wells</td>
<td>Ensure no bubbles present prior to reading plate</td>
</tr>
<tr>
<td></td>
<td>All wells not washed equally/thoroughly</td>
<td>Check that all ports of plate washer are unobstructed wash wells as recommended</td>
</tr>
<tr>
<td></td>
<td>Incomplete reagent mixing</td>
<td>Ensure all reagents/master mixes are mixed thoroughly</td>
</tr>
<tr>
<td></td>
<td>Inconsistent pipetting</td>
<td>Use calibrated pipettes and ensure accurate pipetting</td>
</tr>
<tr>
<td></td>
<td>Inconsistent sample preparation or storage</td>
<td>Ensure consistent sample preparation and optimal sample storage conditions (e.g. minimize freeze/thaws cycles)</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wells are insufficiently</td>
<td>Wash wells as per protocol</td>
<td></td>
</tr>
<tr>
<td>washed</td>
<td>recommendations</td>
<td></td>
</tr>
<tr>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
<td></td>
</tr>
<tr>
<td>Waiting too long to read</td>
<td>Read plate immediately</td>
<td></td>
</tr>
<tr>
<td>plate after adding STOP</td>
<td>after adding STOP solution</td>
<td></td>
</tr>
<tr>
<td>solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improper storage of</td>
<td>Store all reagents as</td>
<td></td>
</tr>
<tr>
<td>ELISA kit</td>
<td>recommended. Please note all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reagents may not have</td>
<td></td>
</tr>
<tr>
<td></td>
<td>identical storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>requirements.</td>
<td></td>
</tr>
<tr>
<td>Using incompatible</td>
<td>Detection may be reduced</td>
<td></td>
</tr>
<tr>
<td>sample type (e.g. Serum vs.</td>
<td>or absent in untested</td>
<td></td>
</tr>
<tr>
<td>cell extract)</td>
<td>sample types</td>
<td></td>
</tr>
</tbody>
</table>
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 108008523689 (中國聯通)

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp