Instructions for Use

For the quantitative measurement of Transketolase (TKT) in Human cell and tissue extract samples.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND 2
2. ASSAY SUMMARY 3

GENERAL INFORMATION
3. PRECAUTIONS 4
4. STORAGE AND STABILITY 4
5. MATERIALS SUPPLIED 4
6. MATERIALS REQUIRED, NOT SUPPLIED 5
7. LIMITATIONS 5
8. TECHNICAL HINTS 5

ASSAY PREPARATION
9. REAGENT PREPARATION 7
10. STANDARD PREPARATION 8
11. SAMPLE PREPARATION 10
12. PLATE PREPARATION 12

ASSAY PROCEDURE
13. ASSAY PROCEDURE 13

DATA ANALYSIS
14. CALCULATIONS 15
15. TYPICAL DATA 16
16. TYPICAL SAMPLE VALUES 17
17. ASSAY SPECIFICITY 21
18. SPECIES REACTIVITY 23

RESOURCES
19. TROUBLESHOOTING 24
20. NOTES 25
INTRODUCTION

1. BACKGROUND

Abcam’s Transketolase (TKT) *in vitro* SimpleStep ELISA™ (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of TKT protein in Human cell and tissue extract samples.

The SimpleStep ELISA™ employs an affinity tag labeled capture antibody and a reporter conjugated detector antibody which immunocapture the sample analyte in solution. This entire complex (capture antibody/analyte/detector antibody) is in turn immobilized via immunoaffinity of an anti-tag antibody coating the well. To perform the assay, samples or standards are added to the wells, followed by the antibody mix. After incubation, the wells are washed to remove unbound material. TMB substrate is added and during incubation is catalyzed by HRP, generating blue coloration. This reaction is then stopped by addition of Stop Solution completing any color change from blue to yellow. Signal is generated proportionally to the amount of bound analyte and the intensity is measured at 450 nm. Optionally, instead of the endpoint reading, development of TMB can be recorded kinetically at 600 nm.

Transketolase is a key enzyme in the non-oxidative branch of the pentose phosphate pathway that transfers a two-carbon glycoaldehyde unit from ketose-donor to aldose-acceptor sugars. The enzyme is also involved in the photosynthetic Calvin cycle in plants and autotrophic bacteria. Thiamine diphosphate and calcium are essential cofactors in Transketolase catalyzed reactions. In mammals, Transketolase connects the pentose phosphate pathway to glycolysis, feeding excess sugar phosphates into the main carbohydrate metabolic pathways. Its presence is necessary for the production of NADPH, especially in tissues actively engaged in biosyntheses, such as fatty acid synthesis by the liver and mammary glands, and for steroid synthesis by the liver and adrenal glands. TKT activity is decreased in deficiency of thiamine, which is generally due to malnutrition, i.e. Wernicke-Korsakoff syndrome.
2. **ASSAY SUMMARY**

Remove appropriate number of antibody coated well strips. Equilibrate all reagents to room temperature. Prepare all reagents, samples, and standards as instructed.

Add standard or sample to appropriate wells.

Add Antibody Cocktail to all wells. Incubate at room temperature.

Aspirate and wash each well. Add TMB Substrate to each well and incubate. Add Stop Solution at a defined endpoint. Alternatively, record color development kinetically after TMB substrate addition.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at 2-8°C immediately upon receipt.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in sections 9 & 10.

5. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X TKT Capture Antibody</td>
<td>2 x 300 µL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>10X TKT Detector Antibody</td>
<td>2 x 300 µL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>TKT Human Lyophilized Recombinant Protein</td>
<td>2 Vials</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Antibody Diluent 5BI</td>
<td>2 x 3 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>10X Wash Buffer PT</td>
<td>20 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>5X Cell Extraction Buffer PTR</td>
<td>10 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>50X Cell Extraction Enhancer Solution</td>
<td>1 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>TMB Substrate</td>
<td>12 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Sample Diluent NS*</td>
<td>12 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>SimpleStep Pre-Coated 96 Well Microplate (12 x 8 well strips)</td>
<td>96 Wells</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Plate Seal</td>
<td>1</td>
<td>+2-8°C</td>
</tr>
</tbody>
</table>

* Sample Diluent NS only required for serum and plasma samples.
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- Microplate reader capable of measuring absorbance at 450 or 600 nm
- Method for determining protein concentration (BCA assay recommended)
- Deionized water
- PBS (1.4 mM KH2PO4, 8 mM Na2HPO4, 140 mM NaCl, 2.7 mM KCl, pH 7.4)
- Multi- and single-channel pipettes
- Tubes for standard dilution
- Plate shaker for all incubation steps
- Phenylmethylsulfonyl Fluoride (PMSF) (or other protease inhibitors)

7. **LIMITATIONS**

- Assay kit intended for research use only. Not for use in diagnostic procedures
- Do not use kit or components if it has exceeded the expiration date on the kit labels
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted

8. **TECHNICAL HINTS**

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers
- Avoid foaming or bubbles when mixing or reconstituting components
• Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions
• Ensure plates are properly sealed or covered during incubation steps
• Complete removal of all solutions and buffers during wash steps is necessary to minimize background
• As a guide, typical ranges of sample concentration for commonly used sample types are shown below in Sample Preparation (section 11)
• All samples should be mixed thoroughly and gently
• Avoid multiple freeze/thaw of samples
• Incubate ELISA plates on a plate shaker during all incubation steps
• When generating positive control samples, it is advisable to change pipette tips after each step
• The provided 5X Cell Extraction Buffer contains phosphatase inhibitors and protease inhibitor aprotinin. Additional protease inhibitors can be added if required
• The provided Antibody Diluents and Sample Diluents contain protease inhibitor aprotinin. Additional protease inhibitors can be added if required
• The provided 50X Cell Extraction Enhancer Solution may precipitate when stored at + 4°C. To dissolve, warm briefly at + 37°C and mix gently. The 50X Cell Extraction Enhancer Solution can be stored at room temperature to avoid precipitation
• **To avoid high background always add samples or standards to the well before the addition of the antibody cocktail**
• This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions
9. **REAGENT PREPARATION**

- Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells. **The sample volumes below are sufficient for 48 wells (6 x 8-well strips); adjust volumes as needed for the number of strips in your experiment.**
- Prepare only as much reagent as is needed on the day of the experiment. Capture and Detector Antibodies have only been tested for stability in the provided 10X formulations.

9.1 **1X Cell Extraction Buffer PTR**

Prepare 1X Cell Extraction Buffer PTR by diluting 5X Cell Extraction Buffer PTR and 50X Cell Extraction Enhancer Solution to 1X with deionized water. To make 10 mL 1X Cell Extraction Buffer PTR combine 7.8 mL deionized water, 2 mL 5X Cell Extraction Buffer PTR and 200 µL 50X Cell Extraction Enhancer Solution. Mix thoroughly and gently. If required protease inhibitors can be added.

Alternative – Enhancer may be added to 1X Cell Extraction Buffer PTR after extraction of cells or tissue. Refer to note in Section 19.

9.2 **1X Wash Buffer PT**

Prepare 1X Wash Buffer PT by diluting 10X Wash Buffer PT with deionized water. To make 50 mL 1X Wash Buffer PT combine 5 mL 10X Wash Buffer PT with 45 mL deionized water. Mix thoroughly and gently.

9.3 **Antibody Cocktail**

Prepare Antibody Cocktail by diluting the capture and detector antibodies in Antibody Diluent 5BI. To make 3 mL of the Antibody Cocktail combine 300 µL 10X Capture Antibody and 300 µL 10X Detector Antibody with 2.4 mL Antibody Diluent 5BI. Mix thoroughly and gently.
10. **STANDARD PREPARATION**

Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of positive controls for every use.

The following table describes the preparation of a standard curve for duplicate measurements (recommended).

10.1 Reconstitute the TKT Human Lyophilized Recombinant Protein standard sample by adding 200 µL water by pipette. Mix thoroughly and gently. Hold at room temperature for 3 minutes and mix gently. This is the 600 ng/mL Stock Standard Solution (see table below).

10.2 Label eight tubes with numbers 1 – 8.

10.3 Add 150 µL 1X Cell Extraction Buffer PTR into tube numbers 2-8.

10.4 Prepare 300 ng/mL **Standard #1** by adding 150 µL of the 600 ng/mL Stock Standard Solution to 150 µL of 1X Cell Extraction Buffer PTR to tube #1. Mix thoroughly and gently.

10.5 Prepare **Standard #2** by transferring 150 µL from Standard #1 to tube #2. Mix thoroughly and gently.

10.6 Prepare **Standard #3** by transferring 150 µL from Standard #2 to tube #3. Mix thoroughly and gently.

10.7 Using the table below as a guide, repeat for tubes #4 through #7.

10.8 **Standard #8** contains no protein and is the Blank control.
Assay Preparation

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Sample to Dilute</th>
<th>Volume to Dilute (µL)</th>
<th>Volume of Diluent (µL)</th>
<th>Starting Conc. (ng/mL)</th>
<th>Final Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stock</td>
<td>150</td>
<td>150</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>Standard #1</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>Standard #2</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Standard #3</td>
<td>150</td>
<td>150</td>
<td>75</td>
<td>37.5</td>
</tr>
<tr>
<td>5</td>
<td>Standard #4</td>
<td>150</td>
<td>150</td>
<td>37.5</td>
<td>18.75</td>
</tr>
<tr>
<td>6</td>
<td>Standard #5</td>
<td>150</td>
<td>150</td>
<td>18.75</td>
<td>9.37</td>
</tr>
<tr>
<td>7</td>
<td>Standard #6</td>
<td>150</td>
<td>150</td>
<td>9.37</td>
<td>4.68</td>
</tr>
<tr>
<td>8 (Blank)</td>
<td>none</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram of assay preparation process](image_url)
11. **SAMPLE PREPARATION**

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Range (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa cell extract</td>
<td>0.5 – 15</td>
</tr>
<tr>
<td>HepG2 cell extract</td>
<td>5 – 75</td>
</tr>
<tr>
<td>Human Heart Extract</td>
<td>> 100</td>
</tr>
<tr>
<td>Human Liver Extract</td>
<td>12.5 – 100</td>
</tr>
</tbody>
</table>

11.1 Preparation of extracts from cell pellets

11.1.1 Collect non-adherent cells by centrifugation or scrape to collect adherent cells from the culture flask. Typical centrifugation conditions for cells are 500 x g for 5 minutes at 4°C.

11.1.2 Rinse cells twice with PBS.

11.1.3 Solubilize pellet at 2x10^7 cell/mL in chilled 1X Cell Extraction Buffer PTR.

11.1.4 Incubate on ice for 20 minutes.

11.1.5 Centrifuge at 18,000 x g for 20 minutes at 4°C.

11.1.6 Transfer the supernatants into clean tubes and discard the pellets.

11.1.7 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.

11.1.8 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.

11.2 Preparation of extracts from adherent cells by direct lysis (alternative protocol)
11.2.1 Remove growth media and rinse adherent cells 2 times in PBS.

11.2.2 Solubilize the cells by addition of chilled 1X Cell Extraction Buffer PTR directly to the plate (use 750 µL - 1.5 mL 1X Cell Extraction Buffer PTR per confluent 15 cm diameter plate).

11.2.3 Scrape the cells into a microfuge tube and incubate the lysate on ice for 15 minutes.

11.2.4 Centrifuge at 18,000 x g for 20 minutes at 4°C.

11.2.5 Transfer the supernatants into clean tubes and discard the pellets.

11.2.6 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.

11.2.7 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.

11.3 Preparation of extracts from tissue homogenates

11.3.1 Tissue lysates are typically prepared by homogenization of tissue that is first minced and thoroughly rinsed in PBS to remove blood (dounce homogenizer recommended).

11.3.2 Homogenize 100 to 200 mg of wet tissue in 500 µL - 1 mL of chilled 1X Cell Extraction Buffer PTR. For lower amounts of tissue adjust volumes accordingly.

11.3.3 Incubate on ice for 20 minutes.

11.3.4 Centrifuge at 18,000 x g for 20 minutes at 4°C.

11.3.5 Transfer the supernatants into clean tubes and discard the pellets.

11.3.6 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.
11.3.7 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.

12. PLATE PREPARATION

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused plate strips should be immediately returned to the foil pouch containing the desiccant pack, resealed and stored at 4°C.
- For each assay performed, a minimum of two wells must be used as the zero control.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Differences in well absorbance or “edge effects” have not been observed with this assay.
ASSAY PROCEDURE

13. ASSAY PROCEDURE

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections.

13.2 Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, reseal and return to 4°C storage.

13.3 Add 50 µL of all sample or standard to appropriate wells.

13.4 Add 50 µL of the Antibody Cocktail to each well.

13.5 Seal the plate and incubate for 1 hour at room temperature on a plate shaker set to 400 rpm.

13.6 Wash each well with 3 x 350 µL 1X Wash Buffer PT. Wash by aspirating or decanting from wells then dispensing 350 µL 1X Wash Buffer PT into each well. Complete removal of liquid at each step is essential for good performance. After the last wash invert the plate and blot it against clean paper towels to remove excess liquid.

13.7 Add 100 µL of TMB Substrate to each well and incubate for 10 minutes in the dark on a plate shaker set to 400 rpm.

13.8 Add 100 µL of Stop Solution to each well. Shake plate on a plate shaker for 1 minute to mix. Record the OD at 450 nm. This is an endpoint reading.

Alternative to 13.7 – 13.8: Instead of the endpoint reading at 450 nm, record the development of TMB Substrate kinetically. Immediately after addition of TMB Development Solution begin recording the blue color development with elapsed time in the microplate reader prepared with the following settings:
ASSAY PROCEDURE

<table>
<thead>
<tr>
<th>Mode</th>
<th>Kinetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>600 nm</td>
</tr>
<tr>
<td>Time</td>
<td>up to 15 min</td>
</tr>
<tr>
<td>Interval</td>
<td>20 sec - 1 min</td>
</tr>
<tr>
<td>Shaking</td>
<td>Shake between readings</td>
</tr>
</tbody>
</table>

Note that an endpoint reading can also be recorded at the completion of the kinetic read by adding 100 μL Stop Solution to each well and recording the OD at 450 nm.

13.9 Analyze the data as described below.
14. **CALCULATIONS**

Subtract average zero standard from all readings. Average the duplicate readings of the positive control dilutions and plot against their concentrations. Draw the best smooth curve through these points to construct a standard curve. Most plate reader software or graphing software can plot these values and curve fit. A four parameter algorithm (4PL) usually provides the best fit, though other equations can be examined to see which provides the most accurate (e.g. linear, semi-log, log/log, 4 parameter logistic). Interpolate protein concentrations for unknown samples from the standard curve plotted. Samples producing signals greater than that of the highest standard should be further diluted and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.
15. **TYPICAL DATA**

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![TYPICAL STANDARD CURVE](image)

<table>
<thead>
<tr>
<th>Conc. (ng/mL)</th>
<th>O.D. 450 nm 1</th>
<th>O.D. 450 nm 2</th>
<th>Mean O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.060</td>
<td>0.051</td>
<td>0.055</td>
</tr>
<tr>
<td>4.69</td>
<td>0.089</td>
<td>0.079</td>
<td>0.084</td>
</tr>
<tr>
<td>9.37</td>
<td>0.106</td>
<td>0.105</td>
<td>0.106</td>
</tr>
<tr>
<td>18.75</td>
<td>0.168</td>
<td>0.163</td>
<td>0.165</td>
</tr>
<tr>
<td>37.5</td>
<td>0.267</td>
<td>0.294</td>
<td>0.281</td>
</tr>
<tr>
<td>75</td>
<td>0.619</td>
<td>0.624</td>
<td>0.621</td>
</tr>
<tr>
<td>150</td>
<td>1.452</td>
<td>1.464</td>
<td>1.458</td>
</tr>
<tr>
<td>300</td>
<td>3.093</td>
<td>3.075</td>
<td>3.084</td>
</tr>
</tbody>
</table>

Figure 1. Example of TKT standard curve. The TKT standard curve was prepared as described in Section 10. Raw data values are shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
16. **TYPICAL SAMPLE VALUES**

SENSITIVITY –

The calculated minimal detectable dose (MDD) is 800 pg/mL. The MDD was determined by calculating the mean of zero standard replicates (n=27) and adding 2 standard deviations then extrapolating the corresponding concentrations.

RECOVERY –

Three concentrations of Human recombinant TKT protein were spiked in duplicate to the indicated biological matrix to evaluate signal recovery in the working range of the assay.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Average % Recovery</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% 10F RPMI media</td>
<td>114.0</td>
<td>111.9 – 117.7</td>
</tr>
<tr>
<td>10% Goat serum</td>
<td>74.6</td>
<td>73.0 – 75.8</td>
</tr>
<tr>
<td>10% Human serum</td>
<td>109.5</td>
<td>107.2 – 114.0</td>
</tr>
</tbody>
</table>
LINEARIETY OF DILUTION –

Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.

Native TKT protein was measured in the following biological samples in a 2-fold dilution series. Sample dilutions were made in 1X Cell Extraction Buffer PTR. Samples of O.D. 450 nm values below the O.D. 450 nm value of the lowest standard were not analyzed (NA).

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Interpolated value</th>
<th>15 µg/mL HeLa Extract</th>
<th>40 µg/mL HepG2 Extract</th>
<th>100 µg/mL HHH</th>
<th>100 µg/mL HLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undiluted</td>
<td>ng/mL</td>
<td>220.4</td>
<td>67.9</td>
<td>36.5</td>
<td>293.0</td>
</tr>
<tr>
<td>% Expected value</td>
<td>ng/mL</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>99.4</td>
<td>108.6</td>
<td>83.0</td>
<td>99.1</td>
</tr>
<tr>
<td></td>
<td>ng/mL</td>
<td>53.3</td>
<td>19.0</td>
<td>NA</td>
<td>78.9</td>
</tr>
<tr>
<td>% Expected value</td>
<td>ng/mL</td>
<td>96.8</td>
<td>111.7</td>
<td>NA</td>
<td>107.7</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>100.0</td>
<td>106.8</td>
<td>NA</td>
<td>125.5</td>
</tr>
<tr>
<td></td>
<td>ng/mL</td>
<td>13.4</td>
<td>NA</td>
<td>nl</td>
<td>nl</td>
</tr>
<tr>
<td>% Expected value</td>
<td>ng/mL</td>
<td>97.2</td>
<td>NA</td>
<td>nl</td>
<td>nl</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>83.2</td>
<td>NA</td>
<td>nl</td>
<td>nl</td>
</tr>
</tbody>
</table>

HHH – Human Heart Homogenate, HLH – Human Liver Homogenate.

nl – Non-Linear
DATA ANALYSIS

PRECISION –
Mean coefficient of variations of interpolated values from 3 concentrations of HeLa cell extract within the working range of the assay.

<table>
<thead>
<tr>
<th></th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>CV (%)</td>
<td>2.3</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Figure 2. Titration of cell extracts within the working range of the assay. Background-subtracted data values (mean +/- SD, n = 2) are graphed.
Figure 3. Titration of Human tissue homogenate extracts within the working range of the assay. Background-subtracted data values (mean +/- SD, n = 2) are graphed.

17. **ASSAY SPECIFICITY**

This kit recognizes both native and recombinant Human Transketolase protein.
Figure 4. TKT concentrations in HepG2 and HeLa cells. Three concentrations (within the working range of the assay) of the cell extracts were analyzed in duplicates with this kit. The concentrations of TKT were interpolated from data values using TKT standard curve and graphed in ng of TKT per mg of extract (mean +/- SD, n=3).
Figure 5. TKT capture antibody specificity by Western blot analysis. 20 µg of cell lysates (HepG2, lane 1; HeLa, lane 2) were analyzed by Western blotting using the capture antibody of this kit. Note that this antibody detects a single band of 68 kDa and that the TKT levels obtained by this analysis correlate with the result obtained with the use of this kit (Figure 4).

18. **SPECIES REACTIVITY**
This kit recognizes Human Transketolase protein.

Mouse and rat samples have not been tested with this kit.
Please contact our Technical Support team for more information.
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty pipetting lysate; viscous lysate.</td>
<td>Genomic DNA solubilized</td>
<td>Prepare 1X Cell Extraction Buffer PTR (without enhancer). Add enhancer to lysate after extraction.</td>
</tr>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate Pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standard dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; increase to 2 or 3 hour standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td></td>
<td>Incubation times with TMB too brief</td>
<td>Ensure sufficient incubation time until blue color develops prior addition of Stop solution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions.</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store your reconstituted standards at -80°C, all other assay components 4°C. Keep TMB substrate solution protected from light.</td>
</tr>
<tr>
<td>Precipitate in Diluent</td>
<td>Precipitation and/or coagulation of components within the Diluent.</td>
<td>Precipitate can be removed by gently warming the Diluent to 37°C.</td>
</tr>
</tbody>
</table>
20. **NOTES**
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 108008523689 (中國聯通)

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2013 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.