Overview

  • Product nameAnti-SIRT1 antibody
    See all SIRT1 primary antibodies
  • Description
    Rabbit polyclonal to SIRT1
  • SpecificitySIRT1
  • Tested applicationsSuitable for: ICC/IF, IP, WBmore details
  • Species reactivity
    Reacts with: Human
  • Immunogen

    Synthetic peptide conjugated to KLH derived from within residues 1 - 100 of Human SIRT1.

    (Peptide available as ab7770.)

  • Positive control
    • This antibody gave a positive signal in the following whole cell lysate: HEK293 Transiently Overexpressing SIRT1

Properties

Applications

Our Abpromise guarantee covers the use of ab7343 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application Abreviews Notes
ICC/IF Use at an assay dependent dilution. PubMed: 20385619
IP Use at an assay dependent dilution.
WB Use a concentration of 1 µg/ml. Predicted molecular weight: 81.3 kDa.Can be blocked with SIRT1 peptide (ab7770).

Target

  • FunctionNAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates 'Lys-266' of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and 'Lys-26' of HIST1H1E. Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62'. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacteylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletel muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacteylates MECOM/EVI1. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes throug
    Isoform 2: Isoform 2 is shown to deacetylate 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop.
    (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection.
    SirtT1 75 kDa fragment: catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly.
  • Tissue specificityWidely expressed.
  • Sequence similaritiesBelongs to the sirtuin family. Class I subfamily.
    Contains 1 deacetylase sirtuin-type domain.
  • Post-translational
    modifications
    Methylated on multiple lysine residues; methylation is enhanced after DNA damage and is dispensable for deacetylase activity toward p53/TP53.
    Phosphorylated. Phosphorylated by STK4/MST1, resulting in inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by MAPK8/JNK1 at Ser-27, Ser-47, and Thr-530 leads to increased nuclear localization and enzymatic activity. Phosphorylation at Thr-530 by DYRK1A and DYRK3 activates deacetylase activity and promotes cell survival. Phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) at Ser-47 inhibits deacetylation activity. Phosphorylated by CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA deacetylation activity (By similarity). Phosphorylation at Ser-27 implicating MAPK9 is linked to protein stability. There is some ambiguity for some phosphosites: Ser-159/Ser-162 and Thr-544/Ser-545.
    Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1).
    S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent protein deacetylase activity.
  • Cellular localizationCytoplasm. Mitochondrion and Nucleus, PML body. Cytoplasm. Nucleus. Recruited to the nuclear bodies via its interaction with PML (PubMed:12006491). Colocalized with APEX1 in the nucleus (PubMed:19934257). May be found in nucleolus, nuclear euchromatin, heterochromatin and inner membrane (PubMed:15469825). Shuttles between nucleus and cytoplasm (By similarity). Colocalizes in the nucleus with XBP1 isoform 2 (PubMed:20955178).
  • Information by UniProt
  • Database links
  • Alternative names
    • 75SirT1 antibody
    • hSIR2 antibody
    • hSIRT1 antibody
    • HST2, S. cerevisiae, homolog of antibody
    • NAD dependent deacetylase sirtuin 1 antibody
    • NAD dependent protein deacetylase sirtuin 1 antibody
    • OTTHUMP00000198111 antibody
    • OTTHUMP00000198112 antibody
    • Regulatory protein SIR2 homolog 1 antibody
    • SIR1_HUMAN antibody
    • SIR2 antibody
    • SIR2 like 1 antibody
    • SIR2 like protein 1 antibody
    • SIR2, S.cerevisiae, homolog-like 1 antibody
    • SIR2-like protein 1 antibody
    • SIR2ALPHA antibody
    • SIR2L1 antibody
    • Sirt1 antibody
    • SirtT1 75 kDa fragment antibody
    • Sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae) antibody
    • Sirtuin 1 antibody
    • Sirtuin type 1 antibody
    see all

Anti-SIRT1 antibody images

  • All lanes : Anti-SIRT1 antibody (ab7343) at 1 µg/ml

    Lane 1 : HEK293 (Human embryonic kidney cell line) Whole Cell Lysate - Vector Transfected Control
    Lane 2 : HEK293 Whole Cell Lysate Transiently Overexpressing SIRT1

    Lysates/proteins at 5 µg per lane.

    Secondary
    Goat polyclonal to Rabbit IgG - H&L - Pre-Adsorbed (HRP) at 1/3000 dilution

    Performed under reducing conditions.

    Predicted band size : 81.3 kDa
    Observed band size : 120 kDa (why is the actual band size different from the predicted?)
  • SIRT1 was immunoprecipitated from HeLa nuclear extract. The  IP'd fraction was incubated with a histone H4 peptide acetylated with tritiated acetyl-coA, in the presence or absence of NAD+ (the cofactor for SIRT's). After incubation the free label (released acetyl groups) was separated from the peptide.
  • ab7343 (1/200) staining SIRT1 in assynchronous HeLa cells (green). Cells were fixed in paraformaldehyde, permeabilized with 0.5% Triton X100 and counterstained with DAPI in order to highlight the nucleus (red). For further experimental details please refer to Abreview.

    See Abreview



  • Predicted band size : 81.3 kDa

    40ug of whole cell extract (over-expressing the SIRT1 protein) is probed with anti-SIRT1 antibody (ab7343).

    The protein has not been detected in Western blot in HeLa lysates.

    40ug of whole cell extract (over-expressing the SIRT1 protein) is probed with anti-SIRT1 antibody (ab7343). The protein has not been detected in Western blot in HeLa lysates.

References for Anti-SIRT1 antibody (ab7343)

This product has been referenced in:
  • Ling H  et al. Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 11:3779-91 (2012). Read more (PubMed: 23022877) »
  • Caito S  et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 24:3145-59 (2010). WB, ICC/IF ; Human . Read more (PubMed: 20385619) »

See all 8 Publications for this product

Product Wall

Application Immunocytochemistry/ Immunofluorescence
Sample Mouse Cell (oocyte)
Permeabilization Yes - 3.0% TRITON X-100
Specification oocyte
Blocking step BSA as blocking agent for 15 minute(s) · Concentration: 5.0% · Temperature: 25°C
Fixative Paraformaldehyde
Username

Abcam user community

Verified customer

Submitted Jan 13 2016

Application Western blot
Loading amount 15 µg
Gel Running Conditions Reduced Denaturing (7.5%)
Sample Human Cell lysate - whole cell (PBMCs)
Specification PBMCs
Blocking step BSA as blocking agent for 2 hour(s) and 0 minute(s) · Concentration: 5% · Temperature: RT°C
Username

Abcam user community

Verified customer

Submitted Mar 20 2015

Application Immunocytochemistry/ Immunofluorescence
Blocking step BSA as blocking agent for 45 minute(s) · Concentration: 2% · Temperature: RT°C
Sample Human Cell (HeLa cells)
Specification HeLa cells
Permeabilization Yes - 0.2% Triton-X100
Fixative Paraformaldehyde
Username

Abcam user community

Verified customer

Submitted May 23 2014

Application Western blot
Loading amount 20 µg
Gel Running Conditions Reduced Denaturing (12% Bis-Tris)
Sample Cynomolgus Monkey Tissue lysate - whole (Peripheral Blood Mononuclear Cell)
Specification Peripheral Blood Mononuclear Cell
Blocking step Milk as blocking agent for 12 hour(s) and 0 minute(s) · Concentration: 5% · Temperature: 4°C
Username

Mr. Daniel Tyrrell

Verified customer

Submitted Sep 27 2013

Western blot

Excellent
Abreviews
Application Western blot
Loading amount 20 µg
Gel Running Conditions Reduced Denaturing (4-16% gradient Tris-Gly gel)
Sample Mouse Cell lysate - whole cell (Mouse embryonic fibroblasts)
Specification Mouse embryonic fibroblasts
Blocking step LI-COR® Odyssey® Blocking Buffer as blocking agent for 45 minute(s) · Concentration: 50% · Temperature: RT°C
Username

Abcam user community

Verified customer

Submitted May 30 2013

Abreviews
Abcam guarantees this product to work in the species/application used in this Abreview.
Application Western blot
Loading amount 20 µg
Gel Running Conditions Reduced Denaturing (4-16% gradient Tris-Gly gel)
Sample Human Cell lysate - whole cell (HeLa cells)
Specification HeLa cells
Blocking step LI-COR® Odyssey® Blocking Buffer as blocking agent for 45 minute(s) · Concentration: 50% · Temperature: RT°C
Username

Abcam user community

Verified customer

Submitted May 30 2013

Thank you for your reply. Please place your order through your normal service. I have created a credit note/refund for you. Please see below for details. Your credit note ID is xxxxx. I am sorry that this antibody did not perform as stat...

Read More
Abcam guarantees this product to work in the species/application used in this Abreview.
Application Immunocytochemistry/ Immunofluorescence
Sample Human Cell (HeLa)
Specification HeLa
Fixative Paraformaldehyde
Permeabilization Yes - 0.5% Triton X100
Username

Dr. Kirk McManus

Verified customer

Submitted Jan 31 2011

Thank you for your enquiry. For the blocking peptide we recommend using 1 µg/ml. This should be pre-incubated with the relevant antibody for 20 minutes before adding the membrane. If you have any more questions, please contact us again.

Thank you for your reply. We are very sorry to hear that your customer is having difficulty with this antibody. We can offer your customer a refund or a credit note, no problem In the past, we had to rely on our customers and external researche...

Read More

1-10 of 13 Abreviews or Q&A

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"