Product datasheet

Anti-beta Amyloid antibody [DE2B4] ab11132

Overview

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product name</td>
<td>Anti-beta Amyloid antibody [DE2B4]</td>
</tr>
<tr>
<td>Description</td>
<td>Mouse monoclonal [DE2B4] to beta Amyloid</td>
</tr>
<tr>
<td>Host species</td>
<td>Mouse</td>
</tr>
<tr>
<td>Tested applications</td>
<td>Suitable for: ICC/IF, IHC-Fr, WB, IHC-P, IP</td>
</tr>
<tr>
<td>Species reactivity</td>
<td>Reacts with: Human</td>
</tr>
<tr>
<td>Immunogen</td>
<td>Synthetic peptide, corresponding to amino acids 1-17 of Human beta Amyloid.</td>
</tr>
<tr>
<td>Epitope</td>
<td>ab11132 recognizes an epitope in the region 8-16 of the amyloid precursor protein.</td>
</tr>
<tr>
<td>Positive control</td>
<td>IHC-P: Alzheimer's disease human brain; Mouse brain tissue. IHC-Fr: Mouse brain cortex. WB: CHO-K1 cell lysate. ICC/IF: HEK cells.</td>
</tr>
<tr>
<td>General notes</td>
<td>This product should be stored undiluted. Storage in frost-free freezers is not recommended. Should this product contain a precipitate we recommend microcentrifugation before use.</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Liquid</td>
</tr>
<tr>
<td>Storage instructions</td>
<td>Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or -80°C. Avoid freeze / thaw cycle.</td>
</tr>
<tr>
<td>Storage buffer</td>
<td>Preservative: 0.09% Sodium azide Constituent: PBS</td>
</tr>
<tr>
<td>Purity</td>
<td>Protein A purified</td>
</tr>
<tr>
<td>Purification notes</td>
<td>Purified from tissue culture supernatant.</td>
</tr>
<tr>
<td>Clonality</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>Clone number</td>
<td>DE2B4</td>
</tr>
<tr>
<td>Isotype</td>
<td>IgG1</td>
</tr>
</tbody>
</table>

Applications

Our [Abpromise guarantee](#) covers the use of ab11132 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
Function

Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons.

Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity.

Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.

The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.

N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).

Tissue specificity

Expressed in all fetal tissues examined with highest levels in brain, kidney, heart and spleen. Weak expression in liver. In adult brain, highest expression found in the frontal lobe of the cortex and in the anterior perisylvian cortex-opercular gyri. Moderate expression in the cerebellar cortex, the posterior perisylvian cortex-opercular gyri and the temporal associated cortex. Weak expression found in the striate, extra-striate and motor cortices. Expressed in cerebrospinal fluid, and plasma. Isoform APP695 is the predominant form in neuronal tissue, isoform APP751 and

<table>
<thead>
<tr>
<th>Application</th>
<th>Abreviews</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC/IF</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
<tr>
<td>IHC-Fr</td>
<td></td>
<td>1/200.</td>
</tr>
<tr>
<td>WB</td>
<td></td>
<td>Use at an assay dependent concentration. Predicted molecular weight: 87 kDa. PubMed: 19955183</td>
</tr>
<tr>
<td>IHC-P</td>
<td></td>
<td>1/100. Retrieve antigens with 70% Formic acid for 10-30 minutes at room temperature before commencing with IHC staining protocol.</td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
</tbody>
</table>

Target

Function

Use at an assay dependent concentration.
isoform APP770 are widely expressed in non-neuronal cells. Isoform APP751 is the most abundant form in T-lymphocytes. Appican is expressed in astrocytes.

Involvement in disease

Defects in APP are the cause of Alzheimer disease type 1 (AD1) [MIM:104300]. AD1 is a familial early-onset form of Alzheimer disease. It can be associated with cerebral amyloid angiopathy. Alzheimer disease is a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide(s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death.

Defects in APP are the cause of amyloidosis cerebroarterial Dutch type (AMYLCAAD) [MIM:605714]; also known as hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWAD). AMYLCAAD is a hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels. Beta-APP40 is the predominant form of cerebrovascular amyloid. Amyloid is not found outside the nervous system. The principal clinical characteristics are recurrent cerebral and cerebellar hemorrhages, recurrent strokes, cerebral ischemia, cerebral infarction, and progressive mental deterioration. Onset of the disease is in middle age (44 to 60 years). Patients develop cerebral hemorrhage because of the severe cerebral amyloid angiopathy. Parenchymal amyloid deposits are rare and largely in the form of pre-amyloid lesions or diffuse plaque-like structures. They are Congo red negative and lack the dense amyloid cores commonly present in Alzheimer disease.

Defects in APP are the cause of amyloidosis cerebroarterial Italian type (AMYLCAIT) [MIM:605714]. AMYLCAIT is a hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels, resulting in cerebral amyloid angiopathy. Amyloid is not found outside the nervous system. It is a condition very similar to AMYLCAAD, but the clinical course is less severe. Patients manifest mild cognitive decline, recurrent strokes, and epilepsy in some cases. There are extensive amyloid deposits in leptomeningeal and cortical vessels and, to a lesser extent, in the neuropil of the cerebral cortex, in the absence of neurofibrillary tangles.

Defects in APP are the cause of amyloidosis cerebroarterial Iowa type (AMYLCAIW) [MIM:605714]. AMYLCAIW is a hereditary amyloidosis due to amyloid-beta A4 peptide(s) deposition. Patients have progressive aphasic dementia, leukoencephalopathy, and occipital calcifications.

Sequence similarities

Belongs to the APP family.

Contains 1 BPTI/Kunitz inhibitor domain.

Domain

The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.

The NPXY sequence motif found in many tyrosine-phosphorylated proteins is required for the specific binding of the PID domain. However, additional amino acids either N- or C-terminal to the NPXY motif are often required for complete interaction. The PID domain-containing proteins which bind APP require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue. The NPXY site is also involved in clathrin-mediated endocytosis.

Post-translational modifications

Proteolytically processed under normal cellular conditions. Cleavage either by alpha-secretase, beta-secretase or theta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, and the retention of corresponding membrane-anchored C-terminal fragments, C80, C83 and C99. Subsequent processing of C80 and C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is non-amyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42),
major components of amyloid plaques, and the cytotoxic C-terminal fragments, gamma-CTF(50),
gamma-CTF(57) and gamma-CTF(59).
Proteolytically cleaved by caspases during neuronal apoptosis. Cleavage at Asp-739 by either
caspase-6, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased
production of beta-amyloid peptides.
N- and O-glycosylated. O-linkage of chondroitin sulfate to the L-APP isoforms produces the APP
proteoglycan core proteins, the appicans. The chondroitin sulfate chain of appicans contains 4-O-
sulfated galactose in the linkage region and chondroitin sulfate E in the repeated disaccharide
region.

Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific.
Phosphorylation can affect APP processing, neuronal differentiation and interaction with other
proteins. Phosphorylated on Thr-743 in neuronal cells by Cdc5 kinase and Mapk10, in dividing
cells by Cdc2 kinase in a cell-cycle dependent manner with maximal levels at the G2/M phase
and, in vitro, by GSK-3-beta. The Thr-743 phosphorylated form causes a conformational change
which reduces binding of Fe65 family members. Phosphorylation on Tyr-757 is required for SHC
binding. Phosphorylated in the extracellular domain by casein kinases on both soluble and
membrane-bound APP. This phosphorylation is inhibited by heparin.
Extracellular binding and reduction of copper, results in a corresponding oxidation of Cys-144 and
Cys-158, and the formation of a disulfide bond. In vitro, the APP-Cu(+) complex in the presence of
hydrogen peroxide results in an increased production of beta-amyloid-containing peptides.
Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release
sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP).
Beta-amyloid peptides are degraded by IDE.

Cellular localization

Membrane. Membrane > clathrin-coated pit. Cell surface protein that rapidly becomes internalized
via clathrin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic
reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and
sulfated). After alpha-secretase cleavage, soluble APP is released into the extracellular space
and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in
secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface.
Gamma-CTF(59) peptide is located to both the cytoplasm and nuclei of neurons. It can be
translocated to the nucleus through association with APBB1 (Fe65). Beta-APP42 associates with
FRPL1 at the cell surface and the complex is then rapidly internalized. APP sorts to the
basolateral surface in epithelial cells. During neuronal differentiation, the Thr-743 phosphorylated
form is located mainly in growth cones, moderately in neurites and sparingly in the cell body.
Casein kinase phosphorylation can occur either at the cell surface or within a post-Golgi
compartment.
Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-beta Amyloid antibody [DE2B4] (ab11132)

This image is courtesy of an abreview submitted by Carl Hobbs, King's College London, United Kingdom

ab11132 at 1/100 staining human brain (Alzheimer's disease) tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step was performed prior to incubation with ab11132 for 16 hours. A biotinylated goat anti-mouse antibody was used as the secondary.

In this experimental set up ab11132 shows clear extracellular and intracellular staining.

Immunohistochemistry (Frozen sections) - Anti-beta Amyloid antibody [DE2B4] (ab11132)

This image is courtesy of an abreview submitted by Carl Hobbs, King's College London, United Kingdom

ab11132 staining beta Amyloid in transgenic APPP23 mouse brain cortex by immunohistochemistry (frozen sections). Unfixed cryosections were fixed in 4% Formalin in PBS before treatment with 70% Formic acid to reveal antigenic sites. Fixed samples were permeabilized with 0.1% Tween 20, blocked with 1% BSA for 30 minutes at 1°C. Samples were incubated with primary antibody (1/200 in TBS/BSA/Tween 20/azide) for 2 hours. Anti-mouse IgG Alexa Fluor® 594 (1/1000) was used as the secondary antibody.

Western blot - Anti-beta Amyloid antibody [DE2B4] (ab11132)

CHO-K1 cells, expressing either wild-type or Swedish mutant APP, were transfected with the vector encoding stefin B and lysed after 24 hours. The lysates were immunoprecipitated with a polyclonal anti-rabbit stefin B antibody, after which 15% SDS gels and Western blotting with ab11132 at a 1/400 dilution were performed. First and second lanes show results obtained on whole cell lysates of APP-WT and APP-Sw, respectively, and the third and fourth lanes show the corresponding samples after co-immunoprecipitation on anti-stefin B antibody. ab11132 clearly detects a fragment of 15 kDa (according to molecular mass standards) in the APP-WT cells. For further details please see reference.
Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-beta Amyloid antibody [DE2B4] (ab11132)

This image is courtesy of an abreview submitted by Carl Hobbs, King's College London, United Kingdom

ab11132 staining beta amyloid in 15 month TASTPM mouse brain tissue section by Immunohistochemistry (Formalin/PFA fixed paraffin-embedded sections). Tissue underwent fixation in formaldehyde, antigen retrieval in 70% Formic acid buffer for 20 mins and blocking in 1% BSA for 10 mintes at 25°C. The primary antibody was used at 1/100 dilution and incubated with sample for 2 hours. A Biotin conjugated goat polyclonal to mouse IgG1 at 1/200 dilution, was used as secondary.

Immunofluorescence detection using Mouse monoclonal [DE2B4] to beta Amyloid (ab11132) on Human HEK cells. Cells were fixed using Methanol, no antigen retrieval step was necessary. Primary antibody ab11132 was incubated for 1hr at room temperature (1/400). The confocal image of transfected HEK cells shows A. anti-amyloid beta (ab11132), B. swAPP-GFP, C. Overlay. Significant colocalisation is seen as would be expected. (GFP is tagged to C-term of swAPP).

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors