Overview

Product name | Anti-C Peptide antibody
Description | Guinea pig polyclonal to C Peptide
Host species | Guinea pig
Specificity | Ab30477 recognises C peptide: 100%; Pro insulin: < 4.0%, Insulin: 0.0%, Glucagon: 0.0%, Pancreatic Polypeptide: 0.0%.
Tested applications | Suitable for: ELISA, RIA, ICC/IF
Species reactivity | Reacts with: Human
Immunogen | Full length C Peptide protein (Human).

General notes

C Peptide is part of the molecule of Proinsulin, that consists of three parts: C Peptide and two long strands of amino acids (called the alpha and beta chains) that later become linked together to form the insulin molecule. From every molecule of proinsulin, one molecule of insulin plus one molecule of C Peptide are produced. C peptide is released into the blood stream in equal amounts to insulin. A test of C peptide levels will show how much insulin the body is making.

Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.

Properties

Form | Liquid
Storage instructions | Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or -80°C. Avoid freeze / thaw cycle.
Storage buffer | pH: 7.60
| Constituent: PBS
Purity | Whole antiserum
Primary antibody notes | C Peptide is part of the molecule of Proinsulin, that consists of three parts: C Peptide and two long strands of amino acids (called the alpha and beta chains) that later become linked together to form the insulin molecule. From every molecule of proinsulin, one molecule of insulin plus one molecule of C Peptide are produced. C peptide is released into the blood stream in equal amounts to insulin. A test of C peptide levels will show how much insulin the body is making.

Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides,
amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.

Clonality
Polyclonal

Isotype
IgG

Applications

Our Abpromise guarantee covers the use of ab30477 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

<table>
<thead>
<tr>
<th>Application</th>
<th>Abreviews</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>Use at an assay dependent concentration.</td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>Use at an assay dependent concentration.</td>
<td></td>
</tr>
<tr>
<td>ICC/IF</td>
<td>Use at an assay dependent concentration. PubMed: 25365581</td>
<td></td>
</tr>
</tbody>
</table>

Target

Function
Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.

Involvement in disease
Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:176730].
Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:125852].
IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical features are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.
Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:606176].
PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.
Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.

Sequence similarities
Belongs to the insulin family.

Cellular localization
Secreted.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

2
• Replacement or refund for products not performing as stated on the datasheet
• Valid for 12 months from date of delivery
• Response to your inquiry within 24 hours
• We provide support in Chinese, English, French, German, Japanese and Spanish
• Extensive multi-media technical resources to help you
• We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors