For the best experience on the Abcam website please upgrade to a modern browser such as Google Chrome

Hello. We're improving abcam.com and we'd welcome your feedback.

Hello. We're improving abcam.com and we'd welcome your feedback.

Infomation icon

We haven't added this to the BETA yet

New BETA website

New BETA website

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look at our BETA site and see what we’ve done so far.

Switch on our new BETA site

Now available

Search and browse selected products

  • A selection of primary antibodies

Purchase these through your usual distributor

In the coming months

  • Additional product types
  • Supporting content
  • Sign in to your account
  • Purchase online
United States
Your country/region is currently set to:

If incorrect, please enter your country/region into the box below, to view site information related to your country/region.

Call (888) 77-ABCAM (22226) or contact us
Need help? Contact us

  • My account
  • Sign out
Sign in or Register with us

Welcome

Sign in or

Don't have an account?

Register with us
My basket
Quick order
Abcam homepage

  • Research Products
    By product type
    Primary antibodies
    Secondary antibodies
    ELISA and Matched Antibody Pair Kits
    Cell and tissue imaging tools
    Cellular and biochemical assays
    Proteins and Peptides
    By product type
    Proteomics tools
    Agonists, activators, antagonists and inhibitors
    Cell lines and Lysates
    Multiplex miRNA assays
    Multiplex Assays
    By research area
    Cancer
    Cardiovascular
    Cell Biology
    Epigenetics
    Metabolism
    Developmental Biology
    By research area
    Immunology
    Microbiology
    Neuroscience
    Signal Transduction
    Stem Cells
  • Customized Products & Partnerships
    Customized Products & Partnerships

    Customized products and commercial partnerships to accelerate your diagnostic and therapeutic programs.

    Customized products

    Partner with us

  • Support
    Support hub

    Access advice and support for any research roadblock

    View support hub

    Protocols

    Your experiments laid out step by step

    View protocols

  • Events
    • Conference calendar
    • Cancer
    • Cardiovascular
    • Epigenetics & Nuclear signaling
    • Immunology
    • Neuroscience
    • Stem cells
    • Tradeshows
    • Scientific webinars
    Keep up to date with the latest events

    Full event breakdown with abstracts, speakers, registration and more

    View global event calendar

  • Pathways
    Cell signalling pathways

    View all pathways

    View all interactive pathways

Ionotropic glutamate receptors

Related

  • Glutamate receptor subgroups
    • Glutamatergic neuron markers
      • Calcium signaling resources
        • Electrophysiology video protocol
          • NMDA receptor dependent synaptic plasticity
            • Browse all glutamate receptor research tools
              • Metabotropic glutamate receptors

                Overview of the structure and function of ionotropic glutamate receptors.

                ​Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission within the brain

                Contents

                • Introduction to ionotropic glutamate receptors
                • Structure of ionotropic glutamate receptors
                • Ionotropic glutamate receptor function
                • AMPA receptors
                • NMDA receptors
                • Kainate receptors

                ​See our full guide to glutamate receptors

                Introduction to ionotropic glutamate receptors

                iGluRs are found on pre- and postsynaptic cell membranes, primarily within the CNS1 and are divided into AMPA receptors, NMDA receptors and kainate receptors. These subfamilies are named according to their affinities for the synthetic agonists, AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate), NMDA (N-methyl-d-aspartate) and kainic acid (kainate)2. The delta receptor family has been classified as an iGluR by sequence homology3. 

                Figure 1. Groups of ionotropic glutamate receptors

                Ionotropic glutamate receptor structure

                Similar to other ligand-gated ion channels, iGluRs are composed of four domains: the extracellular amino-terminal domain (ATD), the extracellular ligand-binding domain (LBD), four transmembrane domains (TMD), and an intracellular carboxyl-terminal domain (CTD). At the second TMD (TMII), there is a re-entrant loop that gives rise to an extracellular N-terminus and an intracellular C-terminus (Figure 2).

                iGluRs are ligand-gated ion channels, found on pre- and postsynaptic cell membranes, primarily within the CNS [1]. iGluRs are divided into AMPA receptors, NMDA receptors and kainate receptors. These subfamilies are named according to their affinities for the synthetic agonists, AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate), NMDA (N-methyl-d-aspartate) and kainic acid (kainate) [2]. The delta receptor family has been classified as an iGluR by sequence homology [3]. 
                Similar to other ligand-gated ion channels, iGluRs are composed of four domains: the extracellular amino-terminal domain (ATD), the extracellular ligand-binding domain (LBD), four transmembrane domains (TMD), and an intracellular carboxyl-terminal domain (CTD). At the second TMD (TMII), there is a reentrant loop that gives rise to an extracellular N-terminus and an intracellular C-terminus [4] (Figure 1).

                ​

                ​Figure 2. Schematic structure of the ionotropic glutamate receptors. (Adapted from Traynelis, S. F. et al., 2010)


                Ionotropic glutamate receptor function

                iGluRs mediate fast excitatory neurotransmission and are involved in synaptic plasticity and our capacity to learn and form memories. As nonselective cation channels, iGluRs allow ions like Na+, K+ or Ca2+ to pass through the channel upon binding with glutamate1,4. Activation of a significant number of iGluRs generates an action potential (AP). After this signal is received, excitatory amino acid transporters (EAATs) remove glutamate from the synaptic cleft, effectively turning off the signal in preparation for subsequent APs.

                Prolonged stimulation of iGluRs can result in excitotoxicity as over-stimulation causes an abnormal membrane voltage potential that inhibits glutamate uptake by EAATs. Excitotoxicity is a major contributor to neurodegenerative disorders and nervous system injuries, making iGluRs an interesting target for various therapeutic developments5. 

                ​

                AMPA receptors

                ​​AMPA receptors are co-expressed with NMDA receptors at most glutamatergic synapses in glia and neurons, and mediate the majority of fast excitatory neurotransmission within the CNS6. The modulation of AMPA receptors is also a primary mechanism of synaptic plasticity: increasing the number of AMPA receptors at the postsynaptic site can increase the response to an action potential7,8. 

                The Ca2+-permeability of AMPA receptors is dictated by the GluA2 subunit. Normally impermeable to Ca2+, post-transcriptional editing of GluA2 at the TMII region (the Q/R editing site) can convert glutamine (Q) to arginine (R), rendering the receptor Ca2+-permeable4. 

                GluA2 proteins throughout the CNS are almost exclusively in the calcium-impermeable state. This is important because Ca2+ entry through AMPA receptors can trigger neuronal death and can contribute to the pathogenesis of diseases like amyotrophic lateral sclerosis (ALS)9. The distribution of Ca2+-permeable and impermeable AMPA receptors therefore serves as an indicator of selective neuronal vulnerability.

                ​Related products

                • > ​​AMPA agonists and antagonists
                • > Anti-AMPA primary antibodies
                • > AMPA proteins and peptide​


                NMDA receptors

                ​NMDA receptors require the co-binding of glycine in addition to glutamate for activation. A glycine binding site is provided by the GluN1 and GluN3 subunits10. These receptors allow the flow of Ca2+, in addition to Na+ and K+.

                Mg2+ normally blocks the NMDA channel, meaning weak stimuli triggering glutamate-binding result in only limited Ca2+ conductance1,11. In these instances, AMPA receptors mediate the excitatory postsynaptic potential through conductance of Na+ and K+. In the presence of strong stimuli, AMPA receptors depolarize the membrane enough to dislodge Mg2+ from the NMDA receptor channel. This allows NMDA receptors to respond to glutamate-binding and permit the flow of large amounts of Ca2+, Na+ and K+ through the channel. NMDA receptors therefore function as molecular coincidence detectors, requiring both glutamate binding and a strong depolarizing stimulus12.

                The amount of Ca2+ entering the cell, as modulated by NMDA receptors, affects an array of local signal transduction complexes: Ca2+ can act as a secondary messenger in several signaling cascades. For example, activation of calcium/calmodulin-dependent kinase II (CaMKII), upregulation of AMPA receptor expression at the synaptic membrane, and subsequent phosphorylation of the GluA2 AMPA receptor subunit, can result in synaptic enhancement and long-term potentiation5.

                Since NMDA receptors are present on both excitatory and inhibitory neurons, excessive activation can lead to excitotoxicity and neuronal death (as seen in Huntingdon’s disease), or a reduced activity that disturbs the balance of excitation/inhibition (as seen in schizophrenia)13.

                Related products

                • > NMDA agonists and antagonists​​
                • > Anti-NMDA primary antibodies
                • > NMDA proteins and peptides​

                ​​

                Kainate receptors

                Traditionally, kainate receptors have been grouped with AMPA receptors as non-NMDA receptors, sharing many similar agonists and antagonists, but are now known to be a separate group14. 

                Kainate receptors require extracellular Na+ and Cl- for their activation15,16. They are found throughout the CNS where they are usually co-expressed with AMPA and NMDA receptors, although in some regions such as the retina for example, they exist independently. Unlike AMPA and NMDA receptors, kainate receptors can also signal through G-proteins, behaving like metabotropic receptors: canonical signaling (ionotropic) is responsible for membrane depolarization, postsynaptic responses, and neurotransmitter release; while non-canonical (metabotropic) signaling activates G-proteins to affect membrane excitability, neuronal and circuit maturation, and neurotransmitter release17.

                Postsynaptically, kainate receptors work much like AMPA and NMDA receptors, propagating the excitatory postsynaptic current. Presynaptically, they modulate the release of neurotransmitters at both excitatory and inhibitory synapses14. Kainate receptors also play a critical role in synaptic plasticity and are linked to a number of neurological diseases such as epilepsy, schizophrenia, and autism, yet their involvement in brain pathologies remain unclear17.

                Related products

                  • > ​​Kainate agonists and antagonists
                  • > Anti-Kainate primary antibodies
                  • > Kainate proteins and peptide

                  ​​References

                  • 1.           Purves, D. et al. in Neuroscience (eds. Purves, D. et al.) (Sinauer Associates, 2001).

                    2.           Alexander, S. P. H. et al. The Concise Guide to Pharmacology 2013/14: Ligand-gated ion channels. Br. J. Pharmacol. 170, 1706–1796 (2013).

                    3.           Orth, A., Tapken, D. & Hollmann, M. The delta subfamily of glutamate receptors: Characterization of receptor chimeras and mutants. Eur. J. Neurosci. 37, 1620–1630 (2013).

                    4.           Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

                    5.           Willard, S. S. & Koochekpour, S. Glutamate, glutamate receptors, and downstream signaling pathways. Int. J. Biol. Sci. 9, 948–959 (2013).

                    6.           Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

                    7.           Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7, 244–53 (2004).

                    8.           Derkach, V. A., Oh, M. C., Guire, E. S. & Soderling, T. R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat. Rev. Neurosci. 8, 101–13 (2007).

                    9.           Van Den Bosch, L., Vandenberghe, W., Klaassen, H., Van Houtte, E. & Robberecht, W. Ca(2+)-permeable AMPA receptors and selective vulnerability of motor neurons. J. Neurol. Sci. 180, 29–34 (2000).

                    10.        Yao, Y., Belcher, J., Berger, A. J., Mayer, M. L. & Lau, A. Y. Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure 21, 1788–99 (2013).

                    11.        Johnson, J. W. & Ascher, P. Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophys. J. 57, 1085–90 (1990).

                    12.        Purves, D., Augustine, G. J. & Fitzpatrick, D. Neuroscience, 4th Edition. Nature Reviews Neuroscience (2008). doi:978-0878937257

                    13.        Zhou, Q. & Sheng, M. NMDA receptors in nervous system diseases. Neuropharmacology 74, 69–75 (2013).

                    14.        Lerma, J. Roles and rules of kainate receptors in synaptic transmission. Nat. Rev. Neurosci. 4, 481–495 (2003).

                    15.        Bowie, D. Ion-dependent gating of kainate receptors. J. Physiol. 588, 67–81 (2010).

                    16.        Plested, A. J. R. Kainate receptor modulation by sodium and chloride. Adv. Exp. Med. Biol. 717, 93–113 (2011).

                    17.        Lerma, J. & Marques, J. M. Kainate receptors in health and disease. Neuron 80, 292–311 (2013).



                  Get resources and offers direct to your inbox Sign up
                  A-Z by research area
                  • Cancer
                  • Cardiovascular
                  • Cell biology
                  • Developmental biology
                  • Epigenetics & Nuclear signaling
                  • Immunology
                  • Metabolism
                  • Microbiology
                  • Neuroscience
                  • Signal transduction
                  • Stem cells
                  A-Z by product type
                  • Primary antibodies
                  • Secondary antibodies
                  • Biochemicals
                  • Isotype controls
                  • Flow cytometry multi-color selector
                  • Kits
                  • Loading controls
                  • Lysates
                  • Peptides
                  • Proteins
                  • Slides
                  • Tags and cell markers
                  • Tools & Reagents
                  Help & support
                  • Support
                  • Make an Inquiry
                  • Protocols & troubleshooting
                  • Placing an order
                  • RabMAb products
                  • Biochemical product FAQs
                  • Training
                  • Browse by Target
                  Company
                  • Corporate site
                  • Investor relations
                  • Company news
                  • Careers
                  • About us
                  • Blog
                  Events
                  • Tradeshows
                  • Conferences
                  International websites
                  • abcam.cn
                  • abcam.co.jp

                  Join with us

                  • LinkedIn
                  • facebook
                  • Twitter
                  • YouTube
                  • Terms of sale
                  • Website terms of use
                  • Cookie policy
                  • Privacy policy
                  • Legal
                  • Modern slavery statement
                  © 1998-2022 Abcam plc. All rights reserved.