MW 252.14 Da, Purity >99%. AMPA / kainate antagonist. Achieve your results faster with highly validated, pure and trusted compounds.
Select an associated product type
AMPA 1, AMPA 2, AMPA 3, AMPA 4, AMPA-selective glutamate receptor 1, AMPA-selective glutamate receptor 2, AMPA-selective glutamate receptor 3, AMPA-selective glutamate receptor 4, AW490526, Chi-1, EB11, EEA3, EIEE27, EPND, Excitatory amino acid receptor 1, Excitatory amino acid receptor 2, Excitatory amino acid receptor 3, Excitatory amino acid receptor 4, Excitatory amino acid receptor 5, FESD, GLR 6, GLR 7, GLR5, GLUH1, GLUK3, GLUK6, GLUR4C, GRIA1_HUMAN, GRIA2_HUMAN, GRIA3_HUMAN, GRIA4_HUMAN, GRIK, GRIK1_HUMAN, GRIK2 protein, GRIK2_HUMAN, GRIK3_HUMAN, GRIK4_HUMAN, GRIK5_HUMAN, GRIN 2A, GRIN 2B, GRIN3A, GRIN3B, GluA 4, GluA1, GluA2, GluA3, GluK2, GluK4, GluK5, GluN1, GluN2A, GluN2C, GluN2D, GluN3B, GluR 7a, GluR-1, GluR-2, GluR-3, GluR-4, GluR-5, GluR-6, GluR-7, GluR-A, GluR-B, GluR-C, GluR-D, GluR-K1, GluR-K2, GluR-K3, GluRgamma2, Glutamate Receptor Ionotropic N Methyl D Aspartate 2B, Glutamate Receptor Ionotropic N Methyl D Aspartate 2C, Glutamate Receptor Ionotropic N Methyl D Aspartate subunit 2B, Glutamate [NMDA] receptor subunit 3A, Glutamate [NMDA] receptor subunit 3B, Glutamate [NMDA] receptor subunit epsilon-1, Glutamate [NMDA] receptor subunit epsilon-2, Glutamate [NMDA] receptor subunit epsilon-3, Glutamate [NMDA] receptor subunit epsilon-4, Glutamate [NMDA] receptor subunit zeta-1, Glutamate ionotropic receptor AMPA type subunit 3, Glutamate receptor, Glutamate receptor 1, Glutamate receptor 2, Glutamate receptor 3, Glutamate receptor 4, Glutamate receptor 5, Glutamate receptor 6, Glutamate receptor 7, Glutamate receptor C, Glutamate receptor KA 1precursor, Glutamate receptor KA-1, Glutamate receptor KA-2, Glutamate receptor ionotrophic AMPA 3, Glutamate receptor ionotrophic AMPA 4, Glutamate receptor ionotropic, Glutamate receptor ionotropic AMPA 1, Glutamate receptor ionotropic AMPA 2, Glutamate receptor ionotropic N methyl D aspartate 1, Glutamate receptor ionotropic N methyl D aspartate 2A, Glutamate receptor ionotropic N methyl D aspartate 3B, Glutamate receptor ionotropic NMDA 3B, Glutamate receptor ionotropic NMDA2B, Glutamate receptor ionotropic kainate 1, Glutamate receptor ionotropic kainate 2, Glutamate receptor ionotropic kainate 3, Glutamate receptor ionotropic kainate 4, Glutamate receptor ionotropic kainate 4 precursor, Glutamate receptor ionotropic, N-methyl-D aspartate, subunit 1, Glutamate receptor ionotropic, NMDA 2C, Glutamate receptor subunit 3, Glutamate receptor subunit epsilon 2, Glutamate receptor, ionotropic kainate 5 [Precursor], Glutamate receptor, ionotropic, AMPA 3, Glutamate receptor, ionotropic, N-methyl D-aspartate 2D, Glutamate receptor, ionotropic, NMDA2B (epsilon 2), Glutamate receptor, ionotropic, kainate 5, Glutamate receptor, ionotropic, kainate 5 (gamma 2), Grin2c, Grin2d, HBGR1, HBGR2, Human glutamate receptor GLUR5, Ionotrophic Glutamate Receptor, Ionotropic Glutamate receptor 4, KA2, LKS, MGC118086, MGC133252, MGC142178, MGC142180, MRD6, MRD8, MRT6, MRX94, N Methly D Aspartate Receptor Channel Subunit Epsilon 3, N methyl D asparate receptor channel subunit epsilon 2, N methyl D aspartate receptor channel subunit zeta 1, N methyl D aspartate receptor channel, subunit epsilon 1, N methyl D aspartate receptor subunit 2A, N methyl D aspartate receptor subunit 2B, N methyl D aspartate receptor subunit 2C, N methyl d aspartate receptor subunit 2D, N-methyl D-aspartate receptor subtype 2A, N-methyl D-aspartate receptor subtype 2B, N-methyl D-aspartate receptor subtype 2C, N-methyl D-aspartate receptor subtype 2D, N-methyl-D-aspartate receptor, N-methyl-D-aspartate receptor subtype 3A, N-methyl-D-aspartate receptor subtype 3B, N-methyl-D-aspartate receptor subunit 3, N-methyl-D-aspartate receptor subunit NR1, NMD-R1, NMD3A_HUMAN, NMD3B_HUMAN, NMDA 1, NMDA 2D, NMDA NR2B, NMDA receptor 1, NMDA receptor subtype 2A, NMDA receptor subunit 3B, NMDA type glutamate receptor subunit NR3B, NMDAR, NMDAR-L, NMDAR-L1, NMDAR2C, NMDAR2D, NMDAR3A, NMDAR3B, NMDE1_HUMAN, NMDE2_HUMAN, NMDE3_HUMAN, NMDE4_HUMAN, NMDZ1_HUMAN, NR1, NR2A, NR2B, NR2C, NR2D, NR3, OTTHUMP00000041930, OTTHUMP00000045951, OTTHUMP00000096569, OTTHUMP00000160135, OTTHUMP00000160643, OTTHUMP00000165781, OTTHUMP00000174531, OTTHUMP00000224241, OTTHUMP00000224242, OTTHUMP00000224243, OTTHUMP00000231881, bA487F5.1, dJ1171F9.1, estrogen receptor binding CpG island, glutamate receptor form A, glutamate receptor form B, glutamate receptor form C, glutamate receptor form D, glutamate receptor form E, glutamate receptor ionotropic NMDA 2D, glutamate receptor ionotropic, NMDA 1, hNR 3, hNR2A, iGlu5, ionotropic kainate 1, ionotropic kainate 2, ionotropic kainate 3, ionotropic kainate 4, ionotropic kainate 5
MW 252.14 Da, Purity >99%. AMPA / kainate antagonist. Achieve your results faster with highly validated, pure and trusted compounds.
Soluble in DMSO to 100 mM.
AMPA / kainate antagonist
The proteins NMDAR2A NMDAR2B GluN2C NMDAR1 Glutamate Receptor 1 (AMPA subtype) KA1 Ionotropic Glutamate receptor 2 GRIK2/GluK2 GluN2D Glutamate receptor 3/GluA3 NR3A NR3B GRIK3/GluK3 GluK5 GluK1 and GluA4 function as ionotropic glutamate receptors. These receptors mediate excitatory neurotransmission in the central nervous system by allowing cations to pass into the neuron when activated by glutamate. Commonly these proteins are known as NMDA AMPA and kainate receptors based on their pharmacological properties. The NMDAR subunits like NMDAR1 NMDAR2A and NMDAR2B are known for their high calcium permeability. The receptors are mainly expressed in the brain with their distribution varying across different regions.
The ionotropic glutamate receptors contribute to synaptic transmission and plasticity essential for learning and memory. These receptors do not work alone but as part of larger receptor complexes at synaptic sites. The NMDA receptors for example are tetrameric assemblies made from different combinations of subunits like GluN1 and GluN2. AMPA receptors including GluA3 and GluA4 rapidly mediate synaptic responses. They play a role in synaptic strengthening a process critical for long-term potentiation (LTP).
The ionotropic glutamate receptors participate in various signaling pathways linked to neurotransmission and synaptic plasticity. A notable pathway is the calcium signaling pathway where the NMDA receptors contribute significantly. AMPA receptors integrate into the glutamatergic signaling pathway modulating synaptic strength through receptor trafficking. Proteins such as CaMKII and PSD-95 interact with these receptors influencing synaptic plasticity and signal transduction.
These receptors are implicated in neurological conditions such as Alzheimer's disease and epilepsy. NMDA receptor dysfunction is frequently associated with excitotoxicity which can lead to neuronal death in Alzheimer’s. Excessive glutamate release and receptor overactivation are linked to epilepsy where ionotropic glutamate receptors play a role in seizure generation and progression. Proteins like tau in Alzheimer’s and voltage-gated ion channels in epilepsy connect to these receptors in the pathological context complicating disease mechanisms and potential treatment strategies.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
2D chemical structure image of ab120018, DNQX, AMPA / kainate antagonist
Anti-MEK1 (phospho S298) antibody [EPR3338] ab96379 staining MEK1 (phospho S298) in SK-N-SH cells treated with DNQX (ab120018), by ICC/IF. Decrease in MEK1 (phospho S298) expression correlates with increased concentration of DNQX, as described in literature.
The cells were incubated at 37°C for 1h in media containing different concentrations of ab120018 (DNQX) in DMSO, fixed with 4% formaldehyde for 10 minutes at room temperature and blocked with PBS containing 10% goat serum, 0.3 M glycine, 1% BSA and 0.1% tween for 2h at room temperature. Staining of the treated cells with Anti-MEK1 (phospho S298) antibody [EPR3338] ab96379 (1/100 dilution) was performed overnight at 4°C in PBS containing 1% BSA and 0.1% tween. A DyLight 488 goat anti-rabbit polyclonal antibody (Goat Anti-Rabbit IgG H&L (DyLight® 488) preadsorbed ab96899) at 1/250 dilution was used as the secondary antibody.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com