MW 252.2 Da. Potent, competitive NMDA antagonist. See separate isomer (ab120159).
Also available in simple stock solutions (ab146720) - add 1 ml of water to get an exact, ready-to-use concentration.
AMPA 1, AMPA-selective glutamate receptor 1, AW490526, Chi-1, EB11, EIEE27, EPND, FESD, GLUH1, GRIA1_HUMAN, GRIN 2A, GRIN 2B, GRIN3A, GRIN3B, GluA1, GluN1, GluN2A, GluN2C, GluN2D, GluN3B, GluR-1, GluR-A, GluR-K1, Glutamate Receptor Ionotropic N Methyl D Aspartate 2B, Glutamate Receptor Ionotropic N Methyl D Aspartate 2C, Glutamate Receptor Ionotropic N Methyl D Aspartate subunit 2B, Glutamate [NMDA] receptor subunit 3A, Glutamate [NMDA] receptor subunit 3B, Glutamate [NMDA] receptor subunit epsilon-1, Glutamate [NMDA] receptor subunit epsilon-2, Glutamate [NMDA] receptor subunit epsilon-3, Glutamate [NMDA] receptor subunit epsilon-4, Glutamate [NMDA] receptor subunit zeta-1, Glutamate receptor, Glutamate receptor 1, Glutamate receptor ionotropic, Glutamate receptor ionotropic AMPA 1, Glutamate receptor ionotropic N methyl D aspartate 1, Glutamate receptor ionotropic N methyl D aspartate 2A, Glutamate receptor ionotropic N methyl D aspartate 3B, Glutamate receptor ionotropic NMDA 3B, Glutamate receptor ionotropic NMDA2B, Glutamate receptor ionotropic, N-methyl-D aspartate, subunit 1, Glutamate receptor ionotropic, NMDA 2C, Glutamate receptor subunit epsilon 2, Glutamate receptor, ionotropic, N-methyl D-aspartate 2D, Glutamate receptor, ionotropic, NMDA2B (epsilon 2), Grin2c, Grin2d, HBGR1, LKS, MGC133252, MGC142178, MGC142180, MRD6, MRD8, N Methly D Aspartate Receptor Channel Subunit Epsilon 3, N methyl D asparate receptor channel subunit epsilon 2, N methyl D aspartate receptor channel subunit zeta 1, N methyl D aspartate receptor channel, subunit epsilon 1, N methyl D aspartate receptor subunit 2A, N methyl D aspartate receptor subunit 2B, N methyl D aspartate receptor subunit 2C, N methyl d aspartate receptor subunit 2D, N-methyl D-aspartate receptor subtype 2A, N-methyl D-aspartate receptor subtype 2B, N-methyl D-aspartate receptor subtype 2C, N-methyl D-aspartate receptor subtype 2D, N-methyl-D-aspartate receptor, N-methyl-D-aspartate receptor subtype 3A, N-methyl-D-aspartate receptor subtype 3B, N-methyl-D-aspartate receptor subunit 3, N-methyl-D-aspartate receptor subunit NR1, NMD-R1, NMD3A_HUMAN, NMD3B_HUMAN, NMDA 1, NMDA 2D, NMDA NR2B, NMDA receptor 1, NMDA receptor subtype 2A, NMDA receptor subunit 3B, NMDA type glutamate receptor subunit NR3B, NMDAR, NMDAR-L, NMDAR-L1, NMDAR2C, NMDAR2D, NMDAR3A, NMDAR3B, NMDE1_HUMAN, NMDE2_HUMAN, NMDE3_HUMAN, NMDE4_HUMAN, NMDZ1_HUMAN, NR1, NR2A, NR2B, NR2C, NR2D, NR3, OTTHUMP00000041930, OTTHUMP00000160135, OTTHUMP00000160643, OTTHUMP00000165781, OTTHUMP00000174531, OTTHUMP00000224241, OTTHUMP00000224242, OTTHUMP00000224243, estrogen receptor binding CpG island, glutamate receptor ionotropic NMDA 2D, glutamate receptor ionotropic, NMDA 1, hNR 3, hNR2A
MW 252.2 Da. Potent, competitive NMDA antagonist. See separate isomer (ab120159).
Also available in simple stock solutions (ab146720) - add 1 ml of water to get an exact, ready-to-use concentration.
Soluble in water to 100 mM.
Potent, competitive NMDA antagonist. See separate isomer (ab120159).
Also available in simple stock solutions (ab146720) - add 1 ml of water to get an exact, ready-to-use concentration.
The N-Methyl-D-Aspartate Receptor (NMDAR) subunits such as NMDAR2A NMDAR2B GluN2C NMDAR1 GluN2D NR3A and NR3B are key components of glutamate receptors also including the AMPA subtype Glutamate Receptor 1. These receptors are ionotropic and mediate synaptic transmission in the central nervous system. They are expressed in the brain particularly in regions such as the hippocampus and cortex. NMDAR1 also known as GluN1 serves as an obligatory subunit required for functional receptor assembly. The mass of NMDAR subunits varies; for example the GluN1 subunit has an approximate mass of 120 kDa.
These glutamate receptor subunits forming part of NMDAR and AMPA receptor complexes modulate synaptic plasticity which underlies learning and memory. NMDARs are tetrameric complexes composed mostly of two GluN1 subunits combined with two region-specific GluN2 (A-D) or GluN3 (A B) subunits creating diversity in function and pharmacological characteristics. The AMPA receptor primarily built of GluA1 through GluA4 subunits contributes to fast excitatory neurotransmission. Together these receptors regulate calcium ion flow into neurons impacting cellular events essential for neural communication and adaptation.
NMDARs and AMPA receptors integrate into key neural and signaling pathways such as the long-term potentiation pathway which is essential for memory formation. NMDAR activation allows calcium influx necessary for initiating intracellular signaling cascades. The interactions with proteins like CaMKII and synaptic scaffolds like PSD-95 illustrate the role of these receptors in synaptic and protein signaling networks that adjust synaptic strength.
NMDAR and AMPA receptors have massive implications in neurodegenerative diseases like Alzheimer's and neuropsychiatric disorders such as schizophrenia. Dysregulation in NMDAR function possibly through inadequate blockade by antagonists like D-AP5 or D-APV links to excitotoxicity a condition contributing to neuronal death as seen in Alzheimer's. In schizophrenia altered NMDAR signaling is connected to cognitive dysfunction and both NMDAR and AMPA may serve as therapeutic targets.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
2D chemical structure image of ab120160, (R,S)-CPP, NMDA antagonist
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com