Skip to main content

CANX KO cell line available to order. KO validated by Western blot. Free of charge wild type control provided. Knockout achieved by using CRISPR/Cas9, Homozygous: 19 bp deletion in exon 2.

Be the first to review this product! Submit a review

Images

Western blot - Human CANX (Calnexin) knockout HEK-293T cell line (AB255368), expandable thumbnail
  • Western blot - Human CANX (Calnexin) knockout HEK-293T cell line (AB255368), expandable thumbnail
  • Western blot - Human CANX (Calnexin) knockout HEK-293T cell line (AB255368), expandable thumbnail
  • Sanger Sequencing - Human CANX (Calnexin) knockout HEK-293T cell line (AB255368), expandable thumbnail

Key facts

Cell type
HEK-293T
Species or organism
Human
Tissue
Kidney
Form
Liquid
Knockout validation
Sanger Sequencing, Western blot
Mutation description
Knockout achieved by using CRISPR/Cas9, Homozygous: 19 bp deletion in exon 2

Alternative names

Recommended products

CANX KO cell line available to order. KO validated by Western blot. Free of charge wild type control provided. Knockout achieved by using CRISPR/Cas9, Homozygous: 19 bp deletion in exon 2.

Key facts

Cell type
HEK-293T
Form
Liquid
Mutation description
Knockout achieved by using CRISPR/Cas9, Homozygous: 19 bp deletion in exon 2
Concentration
Loading...

Properties

Gene name
CANX
Gene editing type
Knockout
Gene editing method
CRISPR technology
Knockout validation
Sanger Sequencing, Western blot
Zygosity
Homozygous

Quality control

STR analysis
CSF1PO, D13S317, D7S820, D5S818, TH01, D16S539, TPOX

Cell culture

Biosafety level
EU: 2 US: 2
Adherent/suspension
Adherent
Gender
Female

Handling procedures

Initial handling guidelines

Upon arrival, the vial should be stored in liquid nitrogen vapor phase and not at -80°C. Storage at -80°C may result in loss of viability.

1. Thaw the vial in 37°C water bath for approximately 1-2 minutes.
2. Transfer the cell suspension (0.8 mL) to a 15 mL/50 mL conical sterile polypropylene centrifuge tube containing 8.4 mL pre-warmed culture medium, wash vial with an additional 0.8 mL culture medium (total volume 10 mL) to collect remaining cells, and centrifuge at 201 x g (rcf) for 5 minutes at room temperature. 10 mL represents minimum recommended dilution. 20 mL represents maximum recommended dilution.
3. Resuspend the cell pellet in 5 mL pre-warmed culture medium and count using a haemocytometer or alternative cell counting method seed all remaining cells into a T25.
4. Incubate the culture at 37°C incubator with 5% CO2. Check the culture one day after revival and continue to check until 80% confluent. Media change can be given if needed.
5. Once confluent passage into an appropriate flask at a density of 2x104 cells/cm2. Seeding density is given as a guide only and should be scaled to align with individual lab schedules. Cultures should be monitored daily.

Subculture guidelines
  • All seeding densities should be based on cell counts gained by established methods.
  • A guide seeding density of 2x104 cells/cm2 is recommended.
  • Cells should be passaged when they have achieved 80-90% confluence.
Culture medium
DMEM (High Glucose) + 10% FBS
Cryopreservation medium
Cell Freezing Medium-DMSO Serum free media, contains 8.7% DMSO in MEM supplemented with methyl cellulose.

Storage

Shipped at conditions
Dry Ice
Appropriate short-term storage conditions
-196°C
Appropriate long-term storage conditions
-196°C

Notes

Recommended control: Human wild-type HEK293T cell line (ab255449). Please note a wild-type cell line is not automatically included with a knockout cell line order, if required please add recommended wild-type cell line at no additional cost using the code WILDTYPE-TMTK1.

We will provide viable cells that proliferate on revival.

This product is subject to limited use licenses from The Broad Institute and ERS Genomics Limited, and is developed with patented technology. For full details of the limited use licenses and relevant patents please refer to our limited use license and patent pages.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

Calnexin also known as Canx is a type I integral membrane protein of the endoplasmic reticulum (ER) involved in the process of protein folding. This chaperone protein has an approximate molecular weight of 90 kDa and is known for its role in the quality control of glycoproteins. Calnexin is expressed in the ER of cells where it interacts with nascent polypeptides to ensure proper folding and assembly contributing to cellular homeostasis. It exhibits its function through its lectin-like domain that binds to sugar moieties on glycoproteins.

Biological function summary

Calnexin facilitates the proper folding of newly synthesized proteins by forming a complex with another chaperone protein called ERp57. This interaction helps in creating the correct disulfide bonds in glycoproteins which is essential for their stability and functionality. The complex often referred to as the calnexin cycle is critical in preventing the aggregation and misfolding of proteins within the ER. This process ensures that only correctly folded proteins proceed to the Golgi apparatus for further processing and transport.

Pathways

Calnexin plays an important role in the ER-associated degradation (ERAD) pathway and the unfolded protein response (UPR). In these pathways calnexin ensures that misfolded proteins are retained in the ER or targeted for degradation preventing cellular stress. Calnexin is associated with proteins such as calreticulin another chaperone protein with a similar function in the ER. Together they maintain proteostasis within cells and protect against the accumulation of improperly folded proteins.

Associated diseases and disorders

Calnexin is linked to several conditions including cystic fibrosis and certain neurodegenerative diseases. In cystic fibrosis the misfolding and subsequent degradation of the CFTR protein are associated with calnexin's role in the ERAD pathway. Similarly in neurodegenerative diseases such as Alzheimer's disrupted protein folding and aggregation are linked to ER stress where calnexin and other chaperone proteins like BiP play a pivotal role in managing protein misfolding. Understanding calnexin's role in these disorders can contribute to developing strategies to mitigate faulty protein folding and its pathological consequences.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

4 product images

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com