Skip to main content

IDE KO cell line available to order. KO validated by Western blot. Free of charge wild type control provided. Knockout achieved by using CRISPR/Cas9, Homozygous: 4 bp deletion in exon 14.

Be the first to review this product! Submit a review

Images

Western blot - Human IDE (Insulin degrading enzyme) knockout HeLa cell line (AB261755), expandable thumbnail
  • Sanger Sequencing - Human IDE (Insulin degrading enzyme) knockout HeLa cell line (AB261755), expandable thumbnail

Key facts

Cell type

HeLa

Species or organism

Human

Tissue

Cervix

Form

Liquid

Knockout validation

Sanger Sequencing, Western blot

Mutation description

Knockout achieved by using CRISPR/Cas9, Homozygous: 4 bp deletion in exon 14

Alternative names

Recommended products

IDE KO cell line available to order. KO validated by Western blot. Free of charge wild type control provided. Knockout achieved by using CRISPR/Cas9, Homozygous: 4 bp deletion in exon 14.

Key facts

Cell type

HeLa

Form

Liquid

Mutation description

Knockout achieved by using CRISPR/Cas9, Homozygous: 4 bp deletion in exon 14

Antibiotic resistance

Puromycin 1µg/mL

Disease

Adenocarcinoma

Concentration
Loading...

Properties

Gene name

IDE

Gene editing type

Knockout

Gene editing method

CRISPR technology

Knockout validation

Sanger Sequencing, Western blot

Zygosity

Homozygous

Quality control

STR analysis

CSF1PO, D13S317, D7S820, D5S818, TH01, D16S539, TPOX

Cell culture

Biosafety level

EU: 2 US: 2

Adherent/suspension

Adherent

Gender

Female

Handling procedures

Initial handling guidelines

Upon arrival, the vial should be stored in liquid nitrogen vapor phase and not at -80°C. Storage at -80°C may result in loss of viability.

1. Thaw the vial in 37°C water bath for approximately 1-2 minutes.
2. Transfer the cell suspension (0.8 mL) to a 15 mL/50 mL conical sterile polypropylene centrifuge tube containing 8.4 mL pre-warmed culture medium, wash vial with an additional 0.8 mL culture medium (total volume 10 mL) to collect remaining cells, and centrifuge at 201 x g (rcf) for 5 minutes at room temperature. 10 mL represents minimum recommended dilution. 20 mL represents maximum recommended dilution.
3. Resuspend the cell pellet in 5 mL pre-warmed culture medium and count using a haemocytometer or alternative cell counting method seed all remaining cells into a T25.
4. Incubate the culture at 37°C incubator with 5% CO2. Check the culture one day after revival and continue to check until 80% confluent. Media change can be given if needed.
5. Once confluent passage into an appropriate flask at a density of 2x104 cells/cm2. Seeding density is given as a guide only and should be scaled to align with individual lab schedules. Cultures should be monitored daily.

Subculture guidelines

  • All seeding densities should be based on cell counts gained by established methods.

  • A guide seeding density of 2x104 cells/cm2 is recommended.

  • Cells should be passaged when they have achieved 80-90% confluence.

Culture medium

DMEM (High Glucose) + 10% FBS

Cryopreservation medium

Cell Freezing Medium-DMSO Serum free media, contains 8.7% DMSO in MEM supplemented with methyl cellulose.

Storage

Shipped at conditions

Dry Ice

Appropriate short-term storage conditions

-196°C

Appropriate long-term storage conditions

-196°C

Notes

Recommended control: Human wild-type HeLa cell line (Human wild-type HeLa cell line ab255448). Please note a wild-type cell line is not automatically included with a knockout cell line order, if required please add recommended wild-type cell line at no additional cost using the code WILDTYPE-TMTK1.

We will provide viable cells that proliferate on revival.

This product is subject to limited use licenses from The Broad Institute and ERS Genomics Limited, and is developed with patented technology. For full details of the limited use licenses and relevant patents please refer to our limited use license and patent pages.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.

Activity summary

Insulin degrading enzyme (IDE) also known as insulinase is a zinc metalloprotease involved in the breakdown of small proteins including insulin. IDE has a molecular weight of approximately 110 kDa. It works by cleaving the peptide bonds of its substrate proteins therefore decreasing their molecular integrity. IDE is expressed in several tissues including the liver muscle and kidney where it plays a significant role in regulating metabolic processes. This protein can be found both within cells and in the extracellular space.

Biological function summary

IDE manages the levels of insulin and other peptides by degrading them preventing accumulation and maintaining homeostasis. It is not part of a complex but it acts individually in cellular environments to modulate the concentration of its substrates. IDE is important for controlling insulin availability and turnover which impacts glucose metabolism. By influencing the degradation of insulin IDE aids in balancing metabolic demands with insulin availability.

Pathways

IDE plays a vital role in insulin signaling and glucose metabolic processes. It is directly involved in the insulin signaling pathway by regulating insulin levels which consequently affects cellular responses to insulin. IDE connects with several proteins associated with these pathways including insulin receptor and glucose transporters ensuring proper cell signaling and metabolic functions. By modulating insulin levels IDE helps optimize glucose uptake and storage.

Associated diseases and disorders

IDE has a relevant connection to Alzheimer's disease and type 2 diabetes. Its role in insulin degradation links it to type 2 diabetes where dysregulation of insulin levels can exacerbate the disease. IDE is also associated with Alzheimer's disease since it degrades amyloid-beta peptides. Any malfunction or altered expression of IDE can lead to accumulation of these peptides contributing to Alzheimer's pathology. In the context of these diseases IDE interacts with amyloid-beta precursor protein and components of insulin signaling pathways highlighting its significance in maintaining health and preventing disease progression.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

2 product images

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com