Rabbit Recombinant Monoclonal AKT3 antibody - conjugated to Alexa Fluor® 488. Suitable for ICC/IF, Flow Cyt (Intra) and reacts with Human samples.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
ICC/IF | Flow Cyt (Intra) | |
---|---|---|
Human | Tested | Tested |
Mouse | Predicted | Predicted |
Rat | Predicted | Predicted |
Xenopus tropicalis | Predicted | Predicted |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1/100 | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat, Xenopus tropicalis | Dilution info - | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1/50 | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat, Xenopus tropicalis | Dilution info - | Notes - |
Select an associated product type
AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial for the viability of malignant glioma cells. AKT3 isoform may also be the key molecule in up-regulation and down-regulation of MMP13 via IL13. Required for the coordination of mitochondrial biogenesis with growth factor-induced increases in cellular energy demands. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis.
RAC-beta serine/threonine-protein kinase, AKT3
PKBG, AKT3, RAC-gamma serine/threonine-protein kinase, Protein kinase Akt-3, Protein kinase B gamma, RAC-PK-gamma, STK-2, PKB gamma
Rabbit Recombinant Monoclonal AKT3 antibody - conjugated to Alexa Fluor® 488. Suitable for ICC/IF, Flow Cyt (Intra) and reacts with Human samples.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Patented technology
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
What are the advantages of a recombinant monoclonal antibody?
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
AKT1 AKT2 and AKT3 also known as Protein Kinase B (PKB) isoforms are serine/threonine-specific protein kinases with critical roles in cellular processes. AKT1 has a molecular weight of about 55.8 kDa AKT2 weighs approximately 56.1 kDa and AKT3 typically has a similar mass. These proteins are expressed in many tissues including brain and heart with AKT1 ubiquitously present AKT2 focused in insulin-responsive tissues and AKT3 mainly in the brain. The molecular weight of AKT plays an important role in their functionality and specificity in tissues.
AKT proteins regulate cell cycle growing cell survival proliferation and metabolism. They participate as core components of the PI3K/AKT/mTOR signaling pathway forming complexes with other proteins to transmit signals. They bind to phosphoinositide lipids on the cell membrane facilitating their activation and downstream signaling. Through these activities the AKT transporter proteins maintain cellular homeostasis and play a part in stress response.
AKT proteins engage in important signaling networks including the PI3K/AKT pathway and mTOR pathway. They work closely with PI3K and mTOR proteins coordinating cellular growth and energy metabolism. In particular the AKT pathway responds to growth factors and insulin influencing glucose uptake and glycolysis regulation through interaction with proteins such as glycogen synthase kinase 3 (GSK3).
Dysregulation of AKT signaling can lead to cancer and diabetes. High AKT activation correlates with various cancers by promoting cell survival and growth. In diabetes impaired AKT2 regulation disrupts glucose uptake affecting insulin response. AKT's relationship with mTOR is significant as it often influences tumor growth and progression in cancerous tissues.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Overlay histogram showing HeLa cells stained with ab200619 (red line). The cells were fixed with 4% formaldehyde (10 min) and then permeabilized with 0.1% PBS-Tween for 20 min. The cells were then incubated in 1x PBS / 10% normal goat serum / 0.3M glycine to block non-specific protein-protein interactions followed by the antibody (ab200619, 1/50 dilution) for 30 min at 22°C. Isotype control antibody (black line) was rabbit monoclonal IgG [EPR25A] Alexa Fluor® 488 (Alexa Fluor® 488 Rabbit IgG, monoclonal [EPR25A] - Isotype Control ab199091) used at the same concentration and conditions as the primary antibody. Unlabelled sample (blue line) was also used as a control. Acquisition of >5,000 events were collected using a 20mW Argon ion laser (488nm) and 525/30 bandpass filter. This antibody gave a positive signal in HeLa cells fixed with 80% methanol (5 min)/permeabilized with 0.1% PBS-Tween for 20 min used under the same conditions.
ab200619 staining AKT1 + AKT2 + AKT3 in HeLa cells. The cells were fixed with 4% formaldehyde (10min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab200619 at 1/100 dilution (shown in green) and Alexa Fluor® 594 Anti-alpha Tubulin antibody [DM1A] - Microtubule Marker ab195889, Mouse monoclonal to alpha Tubulin (Alexa Fluor® 594), at 2μg/ml (shown in red). Nuclear DNA was labelled with DAPI (shown in blue).
Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com