Rabbit Recombinant Monoclonal ATG7 antibody - conjugated to Alexa Fluor® 488. Suitable for ICC/IF and reacts with Human samples.
IgG
Rabbit
Alexa Fluor® 488
Ex: 495nm, Em: 519nm
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Liquid
Monoclonal
ICC/IF | |
---|---|
Human | Tested |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1/100 | Notes This product gave a positive signal in Jurkat cells fixed with 4% formaldehyde (10 min) and 80% methanol (5 min). |
Select an associated product type
E1-like activating enzyme involved in the 2 ubiquitin-like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 as well as the ATG8 family proteins for their conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Required for autophagic death induced by caspase-8 inhibition. Required for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Modulates p53/TP53 activity to regulate cell cycle and survival during metabolic stress. Plays also a key role in the maintenance of axonal homeostasis, the prevention of axonal degeneration, the maintenance of hematopoietic stem cells, the formation of Paneth cell granules, as well as in adipose differentiation. Plays a role in regulating the liver clock and glucose metabolism by mediating the autophagic degradation of CRY1 (clock repressor) in a time-dependent manner (By similarity).
Ubiquitin-like modifier-activating enzyme ATG7, ATG12-activating enzyme E1 ATG7, Autophagy-related protein 7, Ubiquitin-activating enzyme E1-like protein, APG7-like, hAGP7, APG7L, ATG7
Rabbit Recombinant Monoclonal ATG7 antibody - conjugated to Alexa Fluor® 488. Suitable for ICC/IF and reacts with Human samples.
IgG
Rabbit
Alexa Fluor® 488
Ex: 495nm, Em: 519nm
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Liquid
Monoclonal
EP1759Y
Affinity purification Protein A
Blue Ice
1-2 weeks
+4°C
-20°C
Upon delivery aliquot
Avoid freeze / thaw cycle, Store in the dark
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
This supplementary information is collated from multiple sources and compiled automatically.
ATG7 also known as Autophagy Related 7 is an essential protein involved in the autophagy process. It functions as an E1-like enzyme activating and transferring ubiquitin-like proteins such as ATG12 and LC3. The molecular weight of ATG7 is approximately 78 kDa. It is widely expressed in various tissues although expression levels can differ. One can detect ATG7 using immunoassays like ELISA or antibodies specifically targeting ATG7. Understanding its mechanical role is key to studying cellular homeostasis.
ATG7 plays a significant role in autophagy a cellular degradation pathway critical for cell survival under stress. ATG7 contributes to the formation of autophagosomes by facilitating conjugation of ATG8 family proteins including LC3 to phosphatidylethanolamine. It acts within complexes that regulate cellular energy balance and stress responses ensuring cells maintain their function and integrity. Knockdown of ATG7 can impair autophagic flux highlighting its importance in maintaining cellular processes.
ATG7 is a central player in the autophagy pathway influencing cellular metabolism and turnover. It interacts closely with ATG5 and ATG12 in this pathway to form a conjugation system essential for autophagosome elongation. Additionally ATG7 is involved in the mTOR signaling pathway which regulates nutrient sensing and cellular growth. Interaction with proteins like mTOR allows ATG7 to integrate signals from nutrient availability and stress responses finely tuning the autophagy process.
ATG7 dysfunction has connections to cancer and neurodegenerative diseases like Alzheimer's. Abnormal ATG7 activity disrupts autophagic balance possibly leading to the accumulation of damaged proteins and organelles contributing to disease progression. In cancer altered ATG7 expression may influence tumor survival by affecting cellular stress responses. Proteins such as p53 involved in cell cycle regulation often show association with ATG7-related pathways indicating a complex network influencing disease states. Understanding ATG7's role in these conditions can help explore potential therapeutic strategies.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
ab201251 staining Apg7 in Jurkat cells. The cells were fixed with 80% methanol (5 min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab201251 at 1/100 dilution (shown in green) and Alexa Fluor® 594 Anti-alpha Tubulin antibody [DM1A] - Microtubule Marker ab195889, Mouse monoclonal to alpha Tubulin (Alexa Fluor® 594), at 1/250 dilution (shown in red). Nuclear DNA was labelled with DAPI (shown in blue).
Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).
This product also gave a positive signal under the same testing conditions in Jurkat cells fixed with 4% formaldehyde (10 min).
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com