Skip to main content

Rabbit Recombinant Monoclonal CTCF antibody - conjugated to Alexa Fluor® 488. Suitable for ICC/IF, Flow Cyt (Intra) and reacts with Human samples.

Be the first to review this product! Submit a review

Images

Flow Cytometry (Intracellular) - Alexa Fluor® 488 Anti-CTCF antibody [EPR7314(B)] (AB203704), expandable thumbnail
  • Immunocytochemistry/ Immunofluorescence - Alexa Fluor® 488 Anti-CTCF antibody [EPR7314(B)] (AB203704), expandable thumbnail

Key facts

Isotype
IgG
Host species
Rabbit
Conjugation
Alexa Fluor® 488
Excitation/Emission
Ex: 495nm, Em: 519nm
Storage buffer

pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA

Form
Liquid
Clonality
Monoclonal

Immunogen

  • The exact immunogen used to generate this antibody is proprietary information.

Reactivity data

Select an application
Product promiseTestedExpectedPredictedNot recommended
ICC/IFFlow Cyt (Intra)
Human
Tested
Tested

Tested
Tested

Species
Human
Dilution info
1/100
Notes

This product gave a positive signal in HeLa cells fixed with 4% formaldehyde (10 min).

Tested
Tested

Species
Human
Dilution info
1/500
Notes

-

Associated Products

Select an associated product type

2 products for Alternative Version

2 products for Alternative Product

Target data

Function

Chromatin binding factor that binds to DNA sequence specific sites and regulates the 3D structure of chromatin (PubMed:18347100, PubMed:18654629, PubMed:19322193). Binds together strands of DNA, thus forming chromatin loops, and anchors DNA to cellular structures, such as the nuclear lamina (PubMed:18347100, PubMed:18654629, PubMed:19322193). Defines the boundaries between active and heterochromatic DNA via binding to chromatin insulators, thereby preventing interaction between promoter and nearby enhancers and silencers (PubMed:18347100, PubMed:18654629, PubMed:19322193). Plays a critical role in the epigenetic regulation (PubMed:16949368). Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus (PubMed:16107875, PubMed:16815976, PubMed:17827499). On the maternal allele, binding within the H19 imprinting control region (ICR) mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to IGF2 (By similarity). Mediates interchromosomal association between IGF2/H19 and WSB1/NF1 and may direct distant DNA segments to a common transcription factory (By similarity). Regulates asynchronous replication of IGF2/H19 (By similarity). Plays a critical role in gene silencing over considerable distances in the genome (By similarity). Preferentially interacts with unmethylated DNA, preventing spreading of CpG methylation and maintaining methylation-free zones (PubMed:18413740). Inversely, binding to target sites is prevented by CpG methylation (PubMed:18413740). Plays an important role in chromatin remodeling (PubMed:18413740). Can dimerize when it is bound to different DNA sequences, mediating long-range chromatin looping (PubMed:12191639). Causes local loss of histone acetylation and gain of histone methylation in the beta-globin locus, without affecting transcription (PubMed:12191639). When bound to chromatin, it provides an anchor point for nucleosomes positioning (PubMed:12191639). Seems to be essential for homologous X-chromosome pairing (By similarity). May participate with Tsix in establishing a regulatable epigenetic switch for X chromosome inactivation (PubMed:11743158). May play a role in preventing the propagation of stable methylation at the escape genes from X-inactivation (PubMed:11743158). Involved in sister chromatid cohesion (PubMed:12191639). Associates with both centromeres and chromosomal arms during metaphase and required for cohesin localization to CTCF sites (PubMed:18550811). Plays a role in the recruitment of CENPE to the pericentromeric/centromeric regions of the chromosome during mitosis (PubMed:26321640). Acts as a transcriptional repressor binding to promoters of vertebrate MYC gene and BAG1 gene (PubMed:18413740, PubMed:8649389, PubMed:9591631). Also binds to the PLK and PIM1 promoters (PubMed:12191639). Acts as a transcriptional activator of APP (PubMed:9407128). Regulates APOA1/C3/A4/A5 gene cluster and controls MHC class II gene expression (PubMed:18347100, PubMed:19322193). Plays an essential role in oocyte and preimplantation embryo development by activating or repressing transcription (By similarity). Seems to act as tumor suppressor (PubMed:12191639).

Alternative names

Recommended products

Rabbit Recombinant Monoclonal CTCF antibody - conjugated to Alexa Fluor® 488. Suitable for ICC/IF, Flow Cyt (Intra) and reacts with Human samples.

Key facts

Isotype
IgG
Conjugation
Alexa Fluor® 488
Excitation/Emission
Ex: 495nm, Em: 519nm
Form
Liquid
Clonality
Monoclonal
Immunogen
  • The exact immunogen used to generate this antibody is proprietary information.
Clone number
EPR7314(B)
Purification technique
Affinity purification Protein A
Dissociation constant
1.74 x 10-11 M
Concentration
Loading...

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage duration
1-2 weeks
Appropriate short-term storage conditions
+4°C
Appropriate long-term storage conditions
-20°C
Aliquoting information
Upon delivery aliquot
Storage information
Avoid freeze / thaw cycle, Store in the dark

Notes

Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.

This product is a recombinant monoclonal antibody, which offers several advantages including:

  • - High batch-to-batch consistency and reproducibility
  • - Improved sensitivity and specificity
  • - Long-term security of supply
  • - Animal-free batch production

For more information, read more on recombinant antibodies.

Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

CTCF also known as the CCCTC-binding factor is a highly conserved zinc finger protein involved in transcriptional regulation and chromatin organization. It has a molecular weight of approximately 82 kDa. The CTCF protein plays a critical mechanical role in controlling the three-dimensional architecture of the genome by binding to specific DNA sequences and forming chromatin loops. It is widely expressed in various cell types across tissues where it acts as a transcriptional repressor and activator depending on the context. CTCF immunofluorescence techniques enable the visualization of its dynamic distribution and expression within the nucleus.

Biological function summary

The multipurpose CTCF protein acts in coordinating the spatial organization of the genome. It functions as an insulator by regulating the boundaries between different chromosomal domains and controlling gene expression. CTCF operates within various complexes interacting with cohesin a vital protein complex that facilitates loop formation and influences genome architecture. This interaction helps in maintaining the integrity of the genome structure and proper chromatin insulation which are essential for normal gene function.

Pathways

CTCF plays significant roles in epigenetic regulatory networks and transcriptional pathways. In the epigenetic landscape it influences gene expression through modulation of DNA methylation states at CpG islands interacting with proteins like DNA methyltransferases. In transcriptional pathways CTCF interacts with nuclear factor Y (NF-Y) which contributes to cell cycle regulation by modulating the expression of cell cycle genes. These pathways reflect CTCF's versatility in gene regulation and its influence on maintaining cellular homeostasis.

Associated diseases and disorders

CTCF disruptions have been implicated in cancer and intellectual disabilities. Mutations or altered expression of CTCF can lead to tumorigenesis as CTCF acts as a tumor suppressor by controlling oncogene and tumor suppressor gene expression. In intellectual disabilities CTCF mutations affect brain development by disrupting the expression of neuronal genes. The protein's interaction with cohesin has links to disorders such as Cornelia de Lange syndrome where cohesin complex dysfunction parallels the phenotypes seen with CTCF aberrations.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

2 product images

  • Flow Cytometry (Intracellular) - Alexa Fluor® 488 Anti-CTCF antibody [EPR7314(B)] (ab203704), expandable thumbnail

    Flow Cytometry (Intracellular) - Alexa Fluor® 488 Anti-CTCF antibody [EPR7314(B)] (ab203704)

    Overlay histogram showing HeLa cells stained with ab203704 (red line). The cells were fixed with 4% formaldehyde (10 min) and then permeabilized with 0.1% PBS-Tween for 20 min. The cells were then incubated in 1x PBS / 10% normal goat serum / 0.3M glycine to block non-specific protein-protein interactions followed by the antibody (ab203704, 1/500 dilution) for 30 min at 22°C. Isotype control antibody (black line) was rabbit monoclonal IgG [EPR25A] Alexa Fluor® 488 (Alexa Fluor® 488 Rabbit IgG, monoclonal [EPR25A] - Isotype Control ab199091) used at the same concentration and conditions as the primary antibody. Unlabelled sample (blue line) was also used as a control. Acquisition of >5,000 events were collected using a 20mW Argon ion laser (488nm) and 525/30 bandpass filter. This antibody gave a positive signal in HeLa cells fixed with 80% methanol (5 min)/permeabilized with 0.1% PBS-Tween for 20 min used under the same conditions.

  • Immunocytochemistry/ Immunofluorescence - Alexa Fluor® 488 Anti-CTCF antibody [EPR7314(B)] (ab203704), expandable thumbnail

    Immunocytochemistry/ Immunofluorescence - Alexa Fluor® 488 Anti-CTCF antibody [EPR7314(B)] (ab203704)

    ab203704 staining CTCF in HeLa cells. The cells were fixed with 4% formaldehyde (10 min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab203704 at a 1/100 dilution (shown in green) and Alexa Fluor® 594 Anti-alpha Tubulin antibody [EP1332Y] - Microtubule Marker ab202272, Rabbit monoclonal to alpha Tubulin (Alexa Fluor® 594), at a 1/250 dilution (shown in red). Nuclear DNA was labelled with DAPI (shown in blue).

    Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com