Skip to main content

Rabbit Recombinant Monoclonal MEK1 antibody - conjugated to Alexa Fluor® 594. Suitable for ICC/IF and reacts with Human samples.

Be the first to review this product! Submit a review

Images

Immunocytochemistry/ Immunofluorescence - Alexa Fluor® 594 Anti-MEK1 + MEK2 antibody [EPR16667] (AB208075), expandable thumbnail

Key facts

Isotype
IgG
Host species
Rabbit
Conjugation
Alexa Fluor® 594
Excitation/Emission
Ex: 590nm, Em: 617nm
Storage buffer

pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA

Form
Liquid
Clonality
Monoclonal

Immunogen

  • The exact immunogen used to generate this antibody is proprietary information.

Reactivity data

Select an application
Product promiseTestedExpectedPredictedNot recommended
ICC/IF
Human
Tested
Mouse
Predicted
Rat
Predicted

Tested
Tested

Species
Human
Dilution info
1/50
Notes

This product gave a positive signal in A431 cells fixed with 4% formaldehyde (10 min)

Predicted
Predicted

Species
Mouse, Rat
Dilution info
-
Notes

-

Associated Products

Select an associated product type

6 products for Alternative Version

Target data

Function

Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.

Additional Targets

MAP2K2

Alternative names

Recommended products

Rabbit Recombinant Monoclonal MEK1 antibody - conjugated to Alexa Fluor® 594. Suitable for ICC/IF and reacts with Human samples.

Key facts

Isotype
IgG
Conjugation
Alexa Fluor® 594
Excitation/Emission
Ex: 590nm, Em: 617nm
Form
Liquid
Clonality
Monoclonal
Immunogen
  • The exact immunogen used to generate this antibody is proprietary information.
Clone number
EPR16667
Purification technique
Affinity purification Protein A
Concentration
Loading...

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage duration
1-2 weeks
Appropriate short-term storage conditions
+4°C
Appropriate long-term storage conditions
-20°C
Aliquoting information
Upon delivery aliquot
Storage information
Avoid freeze / thaw cycle, Store in the dark

Notes

Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.

This product is a recombinant monoclonal antibody, which offers several advantages including:

  • - High batch-to-batch consistency and reproducibility
  • - Improved sensitivity and specificity
  • - Long-term security of supply
  • - Animal-free batch production

For more information, read more on recombinant antibodies.

Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

MEK1 and MEK2 also known as MAP2K1 and MAP2K2 respectively are dual-specificity kinases that play roles in signaling pathways mediating cellular responses. MEK1 and MEK2 have molecular weights of approximately 45kDa. They are expressed in various tissues including the heart brain and skeletal muscles reflecting their widespread function within the organism. These proteins are often referred collectively as the MEK1/2 complex due to their shared and overlapping roles in cell signaling.

Biological function summary

MEK1 and MEK2 are integral parts of the mitogen-activated protein kinase (MAPK) signaling cascade. MEK1/2 phosphorylate and activate the ERK1/2 kinases which transmit signals from the cell surface to the nucleus regulating gene expression and cell fate decisions. The MEK1/2 proteins also act in concert with other kinases and substrates forming signaling complexes that ensure specific and regulated cellular outcomes.

Pathways

MEK1 and MEK2 play key roles within the MAPK/ERK pathway a critical signaling mechanism for cell division and survival. They also link to the RAS/MAPK pathway involved in transmitting signals from membrane receptors to the nucleus. In these pathways MEK1/2 interact with proteins like RAF kinases and ERK1/2 propagating signals that influence cellular growth and differentiation.

Associated diseases and disorders

MEK1 and MEK2 are implicated in cancer and neurological disorders. Abnormal activity of the MEK1/2 proteins often due to mutations can lead to uncontrolled cell proliferation contributing to the development of cancers such as melanoma. In neurological disorders dysregulation of MEK1/2 signaling relates to conditions like neuro-cardio-facial-cutaneous syndromes. These proteins interact with other key players in these diseases such as mutant RAF proteins in melanoma highlighting their critical roles in disease mechanisms.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

1 product image

  • Immunocytochemistry/ Immunofluorescence - Alexa Fluor® 594 Anti-MEK1 + MEK2 antibody [EPR16667] (ab208075), expandable thumbnail

    Immunocytochemistry/ Immunofluorescence - Alexa Fluor® 594 Anti-MEK1 + MEK2 antibody [EPR16667] (ab208075)

    ab208075 staining MEK1 + MEK2 in A431 cells. The cells were fixed with 4% formaldehyde (10 min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab208075 at a 1/50 dilution (shown in red) and Alexa Fluor® 488 Anti-alpha Tubulin antibody [DM1A] - Microtubule Marker ab195887, Mouse monoclonal to alpha Tubulin (Alexa Fluor® 488), at a 1/250 dilution (shown in green). Nuclear DNA was labelled with DAPI (shown in blue).

    Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com