Rabbit Recombinant Monoclonal AIF antibody - conjugated to Alexa Fluor® 647. Mitochondrion marker. Suitable for ICC/IF and reacts with Human samples.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
ICC/IF | |
---|---|
Human | Tested |
Mouse | Predicted |
Rat | Predicted |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1/200 | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat | Dilution info - | Notes - |
Select an associated product type
Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). Isoform 4. Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. Isoform 5. Pro-apoptotic isoform.
AIF, PDCD8, AIFM1, Programmed cell death protein 8
Rabbit Recombinant Monoclonal AIF antibody - conjugated to Alexa Fluor® 647. Mitochondrion marker. Suitable for ICC/IF and reacts with Human samples.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
AIF short for Apoptosis-Inducing Factor is a flavoprotein characterized by its mass of approximately 57 kDa. It resides in the mitochondria of cells where it plays a decisive role in apoptosis. Under normal conditions AIF remains in the mitochondrial intermembrane space but when cells receive apoptotic signals AIF translocates to the nucleus leading to chromatin condensation and large-scale DNA fragmentation. The protein is also known as AIFM1 and performs functions beyond apoptosis including regulation of reactive oxygen species. Often analyzed using tools like a mitochondrial AB marker researchers use AIF as an important part of understanding cell death mechanisms.
AIF functions as an important element in mitochondrial-mediated apoptosis. Once released from mitochondria AIF triggers a caspase-independent pathway of apoptosis making it distinct from other pathways where caspases are central. While not part of a larger protein complex AIF interacts closely with several mitochondrial and nuclear elements to execute its functions. Researchers often monitor AIF activity using apoptosis ELISA kits which help in precise detection and quantification of this protein within cellular systems.
The presence and activity of AIF align with the broader apoptotic pathway and mitochondrial respiration. AIF links significantly with other molecules like cytochrome c released during apoptosis although cytochrome c follows a caspase-dependent pathway. It also shows involvement in various cellular injury and stress response pathways reinforcing its role as a major player in cellular fate decisions and intrinsic apoptotic mechanisms.
AIF holds relevance in neurodegenerative disorders such as Parkinson's disease and certain forms of cancer. Misregulation or mutations in AIF can lead to increased susceptibility to these conditions highlighting its importance in maintaining normal cellular and mitochondrial function. AIF also interacts with other proteins implicated in these disorders such as E2F1 in cancer which shares similar apoptotic regulatory roles. These interactions highlight the biological significance of AIF beyond its fundamental apoptosis function making it a potential target for therapeutic interventions.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
ab196847 staining AIF in MCF7 cells. The cells were fixed with 4% formaldehyde (10 min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 10% normal goat serum in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab196847 at 1/2500 dilution (shown in red) and Alexa Fluor® 488 Anti-alpha Tubulin antibody [DM1A] - Microtubule Marker ab195887, Mouse monoclonal to alpha Tubulin (Alexa Fluor® 488), at 1/200 dilution (shown in green). Nuclear DNA was labelled with DAPI (shown in blue).
Image was acquired with a high-content analyser (Operetta CLS, Perkin Elmer) and a maximum intensity projection of confocal sections is shown.
ab196847 staining AIF in HACAT cells. The cells were fixed with 4% formaldehyde (10 min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 10% normal goat serum in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab196847 at 1/200 dilution (shown in red) and Alexa Fluor® 488 Anti-alpha Tubulin antibody [DM1A] - Microtubule Marker ab195887, Mouse monoclonal to alpha Tubulin (Alexa Fluor® 488), at 1/200 dilution (shown in green). Nuclear DNA was labelled with DAPI (shown in blue).
Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com