Rabbit Recombinant Monoclonal Apolipoprotein E antibody - conjugated to Alexa Fluor® 647.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application Target Binding Affinity | Reactivity Expected | Dilution info - | Notes - |
Application Antibody Labelling | Reactivity Expected | Dilution info - | Notes - |
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids (PubMed:14754908, PubMed:1911868, PubMed:6860692). APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance (PubMed:14754908, PubMed:1911868, PubMed:1917954, PubMed:23620513, PubMed:2762297, PubMed:6860692, PubMed:9395455). Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma (PubMed:2762297, PubMed:6860692, PubMed:9395455). As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL) (PubMed:1911868, PubMed:6860692). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles (PubMed:12950167, PubMed:1530612, PubMed:1917954, PubMed:20030366, PubMed:20303980, PubMed:2063194, PubMed:2762297, PubMed:7635945, PubMed:7768901, PubMed:8756331, PubMed:8939961). Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells (PubMed:23676495, PubMed:7635945, PubMed:9395455, PubMed:9488694). A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes (PubMed:1911868, PubMed:1917954, PubMed:23676495, PubMed:29516132, PubMed:9395455). APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues (PubMed:2762297, PubMed:29516132). By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis (PubMed:1917954, PubMed:2762297, PubMed:29516132). APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis (PubMed:14754908, PubMed:23620513, PubMed:9395455). First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues (PubMed:14754908, PubMed:23620513). Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes (PubMed:9395455). APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting (PubMed:25173806, PubMed:8939961). APOE is also involved in innate and adaptive immune responses, controlling for instance the survival of myeloid-derived suppressor cells (By similarity). Binds to the immune cell receptor LILRB4 (PubMed:30333625). APOE may also play a role in transcription regulation through a receptor-dependent and cholesterol-independent mechanism, that activates MAP3K12 and a non-canonical MAPK signal transduction pathway that results in enhanced AP-1-mediated transcription of APP (PubMed:28111074). (Microbial infection) Through its interaction with HCV envelope glycoprotein E2, participates in the attachment of HCV to HSPGs and other receptors (LDLr, VLDLr, and SR-B1) on the cell surface and to the assembly, maturation and infectivity of HCV viral particles (PubMed:25122793, PubMed:29695434). This interaction is probably promoted via the up-regulation of cellular autophagy by the virus (PubMed:29695434).
Apolipoprotein E, Apo-E, APOE
Rabbit Recombinant Monoclonal Apolipoprotein E antibody - conjugated to Alexa Fluor® 647.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
This conjugated primary antibody is released using a quantitative quality control method that evaluates binding affinity post-conjugation and efficiency of antibody labeling.
For suitable applications and species reactivity, please refer to the unconjugated version of this clone. This conjugated antibody is eligible for the Abcam trial program.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
Apolipoprotein E4 often called ApoE4 is a member of the apolipoprotein family and plays an important role in lipid metabolism. As a 34-kDa protein it associates with lipoprotein particles and mediates receptor binding and clearance of these complexes. ApoE4 expresses mainly in the liver and the brain where it facilitates cholesterol and lipid transport and homeostasis. Other important alternative names for this protein include apo E4 and E4 peptide which identify specific functions related to its diverse roles in the body.
ApoE4 is an important player in lipid transport and uptake facilitating the redistribution of lipids among cells. It forms part of a critical complex involved in binding to low-density lipoprotein receptors (LDLR) and the related protein family enabling efficient lipid delivery to peripheral tissues. The interaction of ApoE4 with these receptors directly influences cellular lipid balance impacting important cellular functions. Additionally its polymorphic nature allows the isoforms E2 E3 and E4 to differ in their impacts on lipid transport and disease risk.
ApoE4 engages in the lipid and cholesterol transport pathways prominently impacting the reverse cholesterol transport process and the regulation of plasma lipoprotein metabolism. It interacts with proteins such as LDLR and LRP1 influencing the removal of triglyceride-rich lipoproteins and modulating lipid levels in the circulation. ApoE4's involvement in these pathways highlights its role as a central regulator of lipid homeostasis.
ApoE4 is closely associated with Alzheimer’s disease and cardiovascular disease highlighting its significance beyond lipid transport. ApoE4's isoform uniquely elevates the risk for Alzheimer's disease by potentially altering amyloid-beta metabolism and interfering with tau-associated pathologies making it a target of interest in neurodegenerative research. Additionally individuals bearing the ApoE4 allele exhibit an increased susceptibility to cardiovascular disorders due to its impact on cholesterol transport and clearance often linking it with elevated blood cholesterol levels. Through these diseases ApoE4 connects with other proteins like amyloid precursor protein (APP) and tau in Alzheimer's disease illustrating the broader implications of its biological functions.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com