Rabbit Recombinant Monoclonal FADD antibody - conjugated to Alexa Fluor® 647.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application Target Binding Affinity | Reactivity Expected | Dilution info - | Notes - |
Application Antibody Labelling | Reactivity Expected | Dilution info - | Notes - |
Apoptotic adapter molecule that recruits caspases CASP8 or CASP10 to the activated FAS/CD95 or TNFRSF1A/TNFR-1 receptors. The resulting aggregate called the death-inducing signaling complex (DISC) performs CASP8 proteolytic activation. Active CASP8 initiates the subsequent cascade of caspases mediating apoptosis. Involved in interferon-mediated antiviral immune response, playing a role in the positive regulation of interferon signaling.
Mort1, Fadd, FAS-associated death domain protein, FAS-associating death domain-containing protein, Mediator of receptor induced toxicity
Rabbit Recombinant Monoclonal FADD antibody - conjugated to Alexa Fluor® 647.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
This conjugated primary antibody is released using a quantitative quality control method that evaluates binding affinity post-conjugation and efficiency of antibody labeling.
For suitable applications and species reactivity, please refer to the unconjugated version of this clone. This conjugated antibody is eligible for the Abcam trial program.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
FADD also known as Fas-Associated protein with Death Domain is an adaptor molecule with a molecular weight of approximately 23 kDa. It plays a critical role in the transmission of apoptotic signals. FADD is widely expressed in various tissues particularly in the thymus and immune system cells. This protein serves as a bridge linking death receptors like Fas and TNFR-1 with caspase activation pathways.
FADD is essential in apoptosis where it assists in the assembly of the death-inducing signaling complex (DISC). Upon receptor activation FADD recruits procaspase-8 or -10 to DISC promoting their autocatalytic cleavage and activation. This leads to the subsequent cascade that results in cell apoptosis. FADD also plays a role in necroptosis and is involved in the immune response regulation highlighting its multifunctional nature in cellular processes.
FADD integrates into the apoptotic and necroptotic pathways. In the apoptotic pathway it interacts closely with Fas a death receptor to promote caspase-8 activation. Additionally in the necroptotic pathway FADD associates with RIP1 and RIP3 contributing to an alternative form of programmed cell death. These interactions underline its significant role in controlling cell fate decisions.
Aberrations in FADD function are associated with cancer and autoimmune diseases. Overexpression or mutation of FADD can lead to unchecked cell proliferation or defective apoptosis contributing to cancer development. In autoimmune disorders improper regulation of FADD may disrupt immune tolerance and lead to systemic inflammation. Key proteins involved in these disease processes include caspase-8 and RIPK1 which interact with FADD in regulating cell death and survival mechanisms.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com