Rabbit Recombinant Monoclonal p38 beta/MAPK11 antibody - conjugated to Alexa Fluor® 647. Suitable for ICC/IF and reacts with Human samples.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
ICC/IF | |
---|---|
Human | Tested |
Mouse | Predicted |
Rat | Predicted |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1/100 | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat | Dilution info - | Notes - |
Select an associated product type
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:12452429, PubMed:20626350, PubMed:35857590). MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors (PubMed:12452429, PubMed:20626350, PubMed:35857590). Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each (PubMed:12452429, PubMed:20626350, PubMed:35857590). MAPK11 functions are mostly redundant with those of MAPK14 (PubMed:12452429, PubMed:20626350, PubMed:35857590). Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets (PubMed:12452429, PubMed:20626350). RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1 (PubMed:9687510). RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2 (PubMed:11154262). In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A (PubMed:10330143, PubMed:15356147, PubMed:9430721). The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers (PubMed:10330143, PubMed:15356147, PubMed:9430721). The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates NLRP1 downstream of MAP3K20/ZAK in response to UV-B irradiation and ribosome collisions, promoting activation of the NLRP1 inflammasome and pyroptosis (PubMed:35857590). Phosphorylates methyltransferase DOT1L on 'Ser-834', 'Thr-900', 'Ser-902', 'Thr-984', 'Ser-1001', 'Ser-1009' and 'Ser-1104' (PubMed:38270553).
MAPK14
PRKM11, SAPK2, SAPK2B, MAPK11, Mitogen-activated protein kinase 11, MAP kinase 11, MAPK 11, Mitogen-activated protein kinase p38 beta, Stress-activated protein kinase 2b, p38-2, MAP kinase p38 beta, p38b, SAPK2b
Rabbit Recombinant Monoclonal p38 beta/MAPK11 antibody - conjugated to Alexa Fluor® 647. Suitable for ICC/IF and reacts with Human samples.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
The proteins p38 beta (MAPK11) and p38 alpha (MAPK14) are important components in the mitogen-activated protein kinase (MAPK) family. They are involved in cellular responses to stress signals and are key players in signal transduction. p38 alpha also known as SAPK2a has a molecular weight of approximately 38 kDa. These proteins are ubiquitously expressed but show higher activity in tissues like the heart brain and skeletal muscles. They regulate gene expression by phosphorylating various transcription factors and substrates.
P38 beta and p38 alpha functions include regulation of inflammation cell differentiation and apoptosis. They operate as part of a larger protein kinase complex and are activated by environmental stressors such as cytokines and UV radiation. This activation leads to a cascade of downstream signaling events modulating cellular processes essential for maintaining homeostasis. They have significant roles in immune response and stress-induced transcriptional regulation.
These proteins primarily contribute to the MAPK signaling pathway and the stress-activated protein kinase (SAPK) pathway. The MAPK pathway also includes other kinases like JNK and ERK which work together to regulate cellular responses to a diverse array of stimuli. In the context of immune response these proteins play a critical role working in tandem with other kinases to facilitate cellular adaptation to stress and inflammation.
P38 beta and p38 alpha show significant involvement in inflammatory diseases and cancer. Their role in modulating inflammation links them to conditions such as rheumatoid arthritis where they regulate cytokine production and inflammatory response. Additionally dysregulation in the p38 signaling pathway has associations with cancer progression often interacting with proteins like NF-kB to influence tumorigenesis and cancer cell proliferation.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
ab196646 staining p38 in HeLa cells. The cells were fixed with 4% formaldehyde (10 min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at +4°C with ab196646 at a 1/100 dilution (shown in red) and Alexa Fluor® 488 Anti-alpha Tubulin antibody [DM1A] - Microtubule Marker ab195887, Mouse monoclonal to alpha Tubulin (Alexa Fluor® 488), at a 1/250 dilution (shown in green). Nuclear DNA was labelled with DAPI (shown in blue).
Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com