Rabbit Recombinant Monoclonal PHF1 antibody - conjugated to Alexa Fluor® 750.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application Target Binding Affinity | Reactivity Expected | Dilution info - | Notes - |
Application Antibody Labelling | Reactivity Expected | Dilution info - | Notes - |
Polycomb group (PcG) that specifically binds histone H3 trimethylated at 'Lys-36' (H3K36me3) and recruits the PRC2 complex. Involved in DNA damage response and is recruited at double-strand breaks (DSBs). Acts by binding to H3K36me3, a mark for transcriptional activation, and recruiting the PRC2 complex: it is however unclear whether recruitment of the PRC2 complex to H3K36me3 leads to enhance or inhibit H3K27me3 methylation mediated by the PRC2 complex. According to some reports, PRC2 recruitment by PHF1 promotes H3K27me3 and subsequent gene silencing by inducing spreading of PRC2 and H3K27me3 into H3K36me3 loci (PubMed:18285464, PubMed:23273982). According to another report, PHF1 recruits the PRC2 complex at double-strand breaks (DSBs) and inhibits the activity of PRC2 (PubMed:23142980). Regulates p53/TP53 stability and prolonges its turnover: may act by specifically binding to a methylated from of p53/TP53.
PCL1, PHF1, PHD finger protein 1, Protein PHF1, hPHF1, Polycomb-like protein 1, hPCl1
Rabbit Recombinant Monoclonal PHF1 antibody - conjugated to Alexa Fluor® 750.
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
This antibody is specific to PHD finger protein 1, not paired helical filaments.
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
This conjugated primary antibody is released using a quantitative quality control method that evaluates binding affinity post-conjugation and efficiency of antibody labeling.
For suitable applications and species reactivity, please refer to the unconjugated version of this clone. This conjugated antibody is eligible for the Abcam trial program.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
The PHD finger protein 1 also known as PHF1 is a protein involved in chromatin remodeling. It weighs approximately 60 kDa. You may find PHF1 expressed in various human tissues including the brain heart and skeletal muscle which suggests its versatile roles across different cell types. This protein contains a plant homeodomain (PHD) finger motif which functions mechanically in binding to specific histone modifications notably those associated with methylated lysine residues.
PHD finger protein 1 plays a role in regulating gene expression by modifying the chromatin structure. It acts as part of the PRC2 complex which is pivotal for depositing methyl marks on histone H3 at lysine 27 (H3K27me3). This modification results in transcriptional repression of target genes. Additionally PHF1 interacts with other chromatin regulators thereby contributing to the finely-tuned control of genetic programs essential for cellular differentiation and development.
PHD finger protein 1 is involved in the Polycomb group (PcG) pathways along with the Wnt signaling pathway. PHF1 cooperates with other proteins like EZH2 which is an important enzymatic component of the PRC2 complex to mediate its repressive function on chromatin. This interaction and pathway association highlight its involvement in maintaining stem cell pluripotency and lineage specification during development.
PHD finger protein 1 associates with cancers notably endometrial cancer and sarcomas. Alterations in PHF1 expression or function influence the disease progression partly through its interaction with EZH2 leading to abnormal silencing of tumor suppressor genes. Investigations of PHF1 reveal its potential as a biomarker and therapeutic target connecting its modulation to disease outcomes and treatment strategies.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com