Rabbit Recombinant Monoclonal RUNX1 / AML1 antibody - conjugated to Alexa Fluor® 750.
IgG
Rabbit
Alexa Fluor® 750
Ex: 749nm, Em: 775nm
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Liquid
Monoclonal
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application Target Binding Affinity | Reactivity Expected | Dilution info - | Notes - |
Application Antibody Labelling | Reactivity Expected | Dilution info - | Notes - |
Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity).Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation.Isoform AML-1L interferes with the transactivation activity of RUNX1.
RUNX3, RUNX2
Runt-related transcription factor 1, Acute myeloid leukemia 1 protein, Core-binding factor subunit alpha-2, Oncogene AML-1, Polyomavirus enhancer-binding protein 2 alpha B subunit, SL3-3 enhancer factor 1 alpha B subunit, SL3/AKV core-binding factor alpha B subunit, CBF-alpha-2, PEA2-alpha B, PEBP2-alpha B, RUNX1, AML1, CBFA2
Rabbit Recombinant Monoclonal RUNX1 / AML1 antibody - conjugated to Alexa Fluor® 750.
Runt-related transcription factor 1, Acute myeloid leukemia 1 protein, Core-binding factor subunit alpha-2, Oncogene AML-1, Polyomavirus enhancer-binding protein 2 alpha B subunit, SL3-3 enhancer factor 1 alpha B subunit, SL3/AKV core-binding factor alpha B subunit, CBF-alpha-2, PEA2-alpha B, PEBP2-alpha B, RUNX1, AML1, CBFA2
IgG
Rabbit
Alexa Fluor® 750
Ex: 749nm, Em: 775nm
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 68% PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Liquid
Monoclonal
EPR3099
Tissue culture supernatant
Blue Ice
1-2 weeks
+4°C
-20°C
Upon delivery aliquot
Avoid freeze / thaw cycle, Store in the dark
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
This conjugated primary antibody is released using a quantitative quality control method that evaluates binding affinity post-conjugation and efficiency of antibody labeling.
For suitable applications and species reactivity, please refer to the unconjugated version of this clone. This conjugated antibody is eligible for the Abcam trial program.
Alexa Fluor® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company. The Alexa Fluor® dye included in this product is provided under an intellectual property license from Life Technologies Corporation. As this product contains the Alexa Fluor® dye, the purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). As this product contains the Alexa Fluor® dye the sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: in manufacturing; (ii) to provide a service, information, or data in return for payment (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are sold for use in research. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@thermofisher.com.
This supplementary information is collated from multiple sources and compiled automatically.
RUNX1 also known as AML1 is a transcription factor that plays an important role in gene regulation. RUNX3 and RUNX2 are related proteins that belong to the same RUNX family which are defined by the runt homology domain. RUNX1 typically has a mass of approximately 50 kilodaltons (kDa). These proteins express in various tissues including hematopoietic cells for RUNX1 skeletal tissues for RUNX2 and immune cells for RUNX3. They bind to DNA influencing the transcription of target genes which are critical for development processes.
RUNX proteins mediate cellular differentiation and proliferation. They often participate in complex with CBFβ which stabilizes their interaction with DNA and enhances transcriptional activity. RUNX1 in particular regulates hematopoiesis the process of blood cell formation. RUNX2 is fundamentally involved in osteogenesis facilitating bone growth and remodeling. RUNX3 contributes to immune responses by affecting T-cell differentiation and function. Their dynamic interactions dictate the expression levels of genes involved in these vital processes.
RUNX proteins integrate into significant signaling cascades. In hematopoietic regulation RUNX1 interacts importantly within the Notch and TGF-β pathways. It cooperates with other proteins such as GATA1 and TAL1 influencing lineage commitment and differentiation of blood cells. RUNX2 critical in the ossification pathway often partners with proteins including SMADs in response to bone morphogenetic protein (BMP) signaling guiding osteoblast differentiation. These pathways demonstrate the versatility and specificity of RUNX proteins in biological processes.
Aberrations in RUNX1 are strongly linked to acute myeloid leukemia (AML). Mutations or translocations affecting RUNX1 disrupt normal hematopoiesis leading to leukemogenic processes. RUNX3 involvement can be observed in cancers like gastric cancer where its silencing or inactivation associates with tumorigenesis. RUNX2 overexpression sometimes links with bone disorders such as cleidocranial dysplasia. Here RUNX2 may interact with other skeletal regulators like PTHLH influencing proper bone development and growth. Understanding these interactions provides insights into potential therapeutic targets for managing these conditions.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com