Skip to main content

Rabbit Recombinant Monoclonal PARP1 antibody. Suitable for IHC-P, WB and reacts with Human, Mouse samples. Cited in 1 publication.

Be the first to review this product! Submit a review

Images

Western blot - Anti-Cleaved PARP1 antibody [SP276] (AB225715), expandable thumbnail
  • Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Cleaved PARP1 antibody [SP276] (AB225715), expandable thumbnail
  • Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Cleaved PARP1 antibody [SP276] (AB225715), expandable thumbnail
  • Western blot - Anti-Cleaved PARP1 antibody [SP276] (AB225715), expandable thumbnail
  • Western blot - Anti-Cleaved PARP1 antibody [SP276] (AB225715), expandable thumbnail

Publications

Key facts

Isotype
IgG
Host species
Rabbit
Storage buffer

pH: 7.6
Preservative: 0.1% Sodium azide
Constituents: PBS, 1% BSA

Form
Liquid
Clonality
Monoclonal

Immunogen

  • The exact immunogen used to generate this antibody is proprietary information.

Reactivity data

Select an application
Product promiseTestedExpectedPredictedNot recommended
IHC-PWB
Human
Tested
Tested
Mouse
Expected
Tested
Rat
Predicted
Predicted

Tested
Tested

Species
Human
Dilution info
1/100
Notes

Primary incubation for 10 minutes at room temperature.

Perform heat-mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol.

Expected
Expected

Species
Mouse
Dilution info
Use at an assay dependent concentration.
Notes

-

Predicted
Predicted

Species
Rat
Dilution info
-
Notes

-

Tested
Tested

Species
Mouse
Dilution info
1/100
Notes

Primary incubation for 1 hour at room temperature.

Species
Human
Dilution info
1/100
Notes

Primary incubation for 1 hour at room temperature.

Predicted
Predicted

Species
Rat
Dilution info
-
Notes

-

Associated Products

Select an associated product type

6 products for Alternative Product

Target data

Function

Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). Poly [ADP-ribose] polymerase 1, processed C-terminus. Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). Poly [ADP-ribose] polymerase 1, processed N-terminus. This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis.

Alternative names

Recommended products

Rabbit Recombinant Monoclonal PARP1 antibody. Suitable for IHC-P, WB and reacts with Human, Mouse samples. Cited in 1 publication.

Key facts

Isotype
IgG
Form
Liquid
Clonality
Monoclonal
Immunogen
  • The exact immunogen used to generate this antibody is proprietary information.
Clone number
SP276
Purification technique
Affinity purification Protein A/G
Concentration
Loading...
Purification notes

Purified from TCS by Protein A/G.

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage duration
1-2 weeks
Appropriate short-term storage conditions
+4°C
Appropriate long-term storage conditions
-20°C
Aliquoting information
Upon delivery aliquot
Storage information
Avoid freeze / thaw cycle

Notes

This product is FOR RESEARCH USE ONLY. For commercial use, please contact partnerships@abcam.com.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

Cleaved PARP1 also known as cPARP is a fragment of the PARP1 protein an important DNA repair enzyme. The full PARP1 protein has a molecular weight of approximately 116 kDa but after cleavage during apoptosis the cleaved PARP1 fragments typically have a molecular weight of around 89 kDa and 24 kDa. PARP1 is expressed abundantly in the cell nucleus where it plays important roles in maintaining genomic integrity. The cleavage of PARP1 is a common marker for cell apoptosis pointing towards its breakdown in response to cellular stress.

Biological function summary

The enzymatic function of PARP1 involves the transfer of ADP-ribose units from NAD+ to target proteins a process known as ADP-ribosylation. PARP1 operates as a part of the base excision repair complex essential in DNA repair processes. The cleaved form of PARP1 no longer facilitates DNA repair marking a shift towards apoptosis. When PARP1 is cleaved it indicates caspase activity implying cells are undergoing programmed cell death.

Pathways

Cleaved PARP1 is deeply involved in the apoptosis and DNA damage response pathways. In the apoptosis pathway PARP1 interacts with key proteins like caspase-3 which cleaves PARP during apoptosis. In the DNA damage response PARP1 collaborates with proteins such as XRCC1 facilitating the base excision repair pathway important for fixing single-strand DNA breaks. These pathways highlight the dual role of PARP1 in promoting cell survival through repair and cell death via apoptosis.

Associated diseases and disorders

Cleaved PARP1 serves as an important marker in cancer and neurodegenerative diseases. In cancer research elevated levels of cleaved PARP1 suggest increased rates of apoptosis in response to anti-cancer therapies linking it to tumor suppression efforts. In neurodegenerative diseases excessive activation and cleavage of PARP1 can result in cell death exacerbating conditions like Alzheimer's disease. Through these contexts cleaved PARP1 connects to other therapeutic targets such as caspase proteins in cancer and to potential PARP inhibitors in neurodegenerative disorders.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

5 product images

  • Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715), expandable thumbnail

    Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715)

    False colour image of Western blot: Anti-Cleaved PARP1 antibody [SP276] staining at 1/100 dilution, shown in green; Mouse anti-GAPDH antibody [6C5] (Anti-GAPDH antibody [6C5] - Loading Control ab8245) loading control staining at 1/20000 dilution, shown in red. In Western blot, ab225715 was shown to bind specifically to Cleaved PARP1. A band was observed at 130 (full-length) and 27 (cleaved) kDa in treated wild-type HAP1 cell lysates with no signal observed at this size in PARP1 knockout cell line. To generate this image, wild-type and PARP1 knockout HAP1 cell lysates were analysed. First, samples were run on an SDS-PAGE gel then transferred onto a nitrocellulose membrane. Membranes were blocked in fluorescent western blot (TBS-based) blocking solution before incubation with primary antibodies overnight at 4 °C. Blots were washed four times in TBS-T, incubated with secondary antibodies for 1 h at room temperature, washed again four times then imaged. Secondary antibodies used were Goat anti-Rabbit IgG H&L (IRDye® 800CW) preabsorbed (Goat anti-Rabbit IgG H&L (IRDye® 800CW) preadsorbed ab216773) and Goat anti-Mouse IgG H&L (IRDye® 680RD) preabsorbed (Goat anti-Mouse IgG H&L (IRDye® 680RD) preadsorbed ab216776) at 1/20000 dilution.

    All lanes: Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715) at 1/100 dilution

    Lane 1: Wild-type HAP1 Treated Staurosporine (1 uM, 3 h) cell lysate at 20 µg

    Lane 2: PARP1 knockout HAP1 Treated Staurosporine (1 uM, 3 h) cell lysate at 20 µg

    Lane 3: Wild-type HAP1 Control cell lysate at 20 µg

    Lane 4: PARP1 knockout HAP1 Control cell lysate at 20 µg

    Lane 5: HeLa Treated Staurosporine (1 uM, 3 h) cell lysate at 20 µg

    Lane 6: HeLa cell lysate at 20 µg

    Performed under reducing conditions.

    Predicted band size: 113 kDa

    Observed band size: 130 kDa, 27 kDa

  • Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Cleaved PARP1 antibody [SP276] (ab225715), expandable thumbnail

    Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Cleaved PARP1 antibody [SP276] (ab225715)

    Formalin-fixed, paraffin-embedded human bladder transitional cell carcinoma tissue stained for Cleaved PARP1 using ab225715 at 1/100 dilution in immunohistochemical analysis.

  • Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Cleaved PARP1 antibody [SP276] (ab225715), expandable thumbnail

    Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Cleaved PARP1 antibody [SP276] (ab225715)

    Formalin-fixed, paraffin-embedded human tonsil tissue stained for Cleaved PARP1 using ab225715 at 1/100 dilution in immunohistochemical analysis.

  • Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715), expandable thumbnail

    Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715)

    All lanes: Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715) at 1/100 dilution

    Lane 1: NIH/3T3 (mouse embryo fibroblast cell line) cell lysate treated with staurosporine

    Lane 2: Untreated NIH/3T3 (mouse embryo fibroblast cell line) cell lysate

    Predicted band size: 113 kDa

  • Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715), expandable thumbnail

    Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715)

    Western blot: Anti-PARP1 antibody [SP276] (ab225715) staining at 1/100 dilution, shown in green; Mouse anti-Alpha Tubulin [DM1A] (Anti-alpha Tubulin antibody [DM1A] - Loading Control ab7291) loading control staining at 1/20000 dilution, shown in magenta. In Western blot, ab225715 was shown to bind specifically to PARP1. A band was observed at 27/125 kDa in wild-type A549 cell lysates with no signal observed at this size in PARP1 knockout cell line. To generate this image, wild-type and PARP1 knockout A549 cell lysates were analysed. First, samples were run on an SDS-PAGE gel then transferred onto a nitrocellulose membrane. Membranes were blocked in fluorescent western blot (TBS-based) blocking solution before incubation with primary antibodies overnight at 4°C. Blots were washed four times in TBS-T, incubated with secondary antibodies for 1 h at room temperature, washed again four times then imaged. Secondary antibodies used were Goat anti-Rabbit IgG H&L 800CW and Goat anti-Mouse IgG H&L 680RD at 1/20000 dilution.

    All lanes: Western blot - Anti-Cleaved PARP1 antibody [SP276] (ab225715) at 1/100 dilution

    Lane 1: Wild-type A549 control staurosporine (0 uM, 72 h) cell lysate at 20 µg

    Lane 2: Wild-type A549 treated staurosporine (3 uM, 24 h) cell lysate at 20 µg

    Lane 3: PARP1 knockout A549 control staurosporine (0 uM, 72 h) cell lysate at 20 µg

    Lane 4: PARP1 knockout A549 treated staurosporine (3 uM, 24 h) cell lysate at 20 µg

    Observed band size: 27 kDa, 125 kDa

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com