Rabbit Recombinant Monoclonal eIF4EBP1 antibody. Carrier free. Suitable for sELISA and reacts with Human samples.
pH: 7.2 - 7.4
Constituents: 100% PBS
sELISA | |
---|---|
Human | Expected |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info Use at an assay dependent concentration. | Notes - |
Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex: hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways.
Eukaryotic translation initiation factor 4E-binding protein 1, 4E-BP1, eIF4E-binding protein 1, Phosphorylated heat- and acid-stable protein regulated by insulin 1, PHAS-I, EIF4EBP1
Rabbit Recombinant Monoclonal eIF4EBP1 antibody. Carrier free. Suitable for sELISA and reacts with Human samples.
pH: 7.2 - 7.4
Constituents: 100% PBS
ab288620 is a BSA and Azide Free antibody supplied in an unconjugated format and it is suitable for sandwich ELISAs to quantify Human eIF4EBP1. The recommended pair for sandwich ELISA is:
Capture: Anti-eIF4EBP1 antibody [YCA-R329-211-6-7 H1L3] - BSA and Azide free (Capture) ab288602 , Human eIF4EBP1Capture Antibody (unconjugated)
Detector: ab288620 , Human eIF4EBP1Detector Antibody (unconjugated)
The reference range value is 29-2500 pg/mL
The recommended antibody orientation is based on internal optimization for ELISA-based assays. Antibody orientation is assay dependent and needs to be optimized for each assay type. Please note that the range provided for this antibody is only an estimation based on the performance of the product using the recommended antibody pair. Performance of the antibody pair will depend on the specific characteristics of your assay. We guarantee the product works in sandwich ELISA, but we do not guarantee the sensitivity or dynamic range of the antibody in your assay.
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
Our carrier-free antibodies are typically supplied in a PBS-only formulation, purified and free of BSA, sodium azide and glycerol. The carrier-free buffer and high concentration allow for increased conjugation efficiency.
This conjugation-ready format is designed for use with fluorochromes, metal isotopes, oligonucleotides, and enzymes, which makes them ideal for antibody labelling, functional and cell-based assays, flow-based assays (e.g. mass cytometry) and Multiplex Imaging applications.
Use our conjugation kits for antibody conjugates that are ready-to-use in as little as 20 minutes with 1 minute hands-on-time and 100% antibody recovery: available for fluorescent dyes, HRP, biotin and gold.
EIF4EBP1 also known as 4EBP1 or p4EBP1 is an important protein that acts as a translational repressor by binding to eIF4E therefore inhibiting cap-dependent translation. The molecular weight of 4EBP1 is approximately 12 kDa. This protein is ubiquitously expressed in various tissues indicating its widespread involvement in cellular functions. eIF4EBP1 can be detected and quantified using techniques like the eIF4EBP1 ELISA making it a common target in research for its role in translation regulation.
EIF4EBP1 plays an important role in regulating cell growth and proliferation by modulating protein synthesis. It is a part of the eIF4F complex which is responsible for the initiation of mRNA translation. When hypophosphorylated eIF4EBP1 binds tightly to eIF4E and prevents the assembly of the active eIF4F complex leading to reduced translation initiation of mRNAs involved in growth and survival. This regulation is important in conditions where cells need to adapt to metabolic stress or external signals.
The mammalian target of rapamycin (mTOR) pathway regulates eIF4EBP1 through phosphorylation. In response to growth signals mTOR phosphorylates eIF4EBP1 causing the release of eIF4E and allowing mRNA translation to proceed. This interaction links eIF4EBP1 to the PI3K/AKT/mTOR signaling pathway which influences cell cycle progression and survival. Related proteins in this pathway include ribosomal protein S6 kinase (S6K1) which is also phosphorylated by mTOR to promote protein synthesis.
Deregulation of eIF4EBP1 has been implicated in cancer and neurological disorders. In cancer hyperactive mTOR signaling can lead to excessive phosphorylation of 4EBP1 decreasing its ability to inhibit eIF4E and enhancing translation of oncogenic proteins. In neurological disorders imbalanced eIF4EBP1 activity can disrupt synaptic plasticity and memory formation. Proteins such as p70S6K which are also part of the mTOR pathway share connections with eIF4EBP1 in these pathological conditions.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Example of Human eIF4eBP1 standard curve. Background-subtracted data values (mean +/- SD) are graphed.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com