Rabbit Recombinant Monoclonal Insulin degrading enzyme / IDE antibody - conjugated to HRP. Suitable for WB and reacts with Human samples.
IgG
Rabbit
HRP
pH: 7.4
Preservative: 0.1% Proclin 300 Solution
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Liquid
Monoclonal
WB | |
---|---|
Human | Tested |
Mouse | Predicted |
Rat | Predicted |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1/5000 | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat | Dilution info - | Notes - |
Select an associated product type
Plays a role in the cellular breakdown of insulin, APP peptides, IAPP peptides, natriuretic peptides, glucagon, bradykinin, kallidin, and other peptides, and thereby plays a role in intercellular peptide signaling (PubMed:10684867, PubMed:17051221, PubMed:17613531, PubMed:18986166, PubMed:19321446, PubMed:21098034, PubMed:2293021, PubMed:23922390, PubMed:24847884, PubMed:26394692, PubMed:26968463, PubMed:29596046). Substrate binding induces important conformation changes, making it possible to bind and degrade larger substrates, such as insulin (PubMed:23922390, PubMed:26394692, PubMed:29596046). Contributes to the regulation of peptide hormone signaling cascades and regulation of blood glucose homeostasis via its role in the degradation of insulin, glucagon and IAPP (By similarity). Plays a role in the degradation and clearance of APP-derived amyloidogenic peptides that are secreted by neurons and microglia (Probable) (PubMed:26394692, PubMed:9830016). Degrades the natriuretic peptides ANP, BNP and CNP, inactivating their ability to raise intracellular cGMP (PubMed:21098034). Also degrades an aberrant frameshifted 40-residue form of NPPA (fsNPPA) which is associated with familial atrial fibrillation in heterozygous patients (PubMed:21098034). Involved in antigen processing. Produces both the N terminus and the C terminus of MAGEA3-derived antigenic peptide (EVDPIGHLY) that is presented to cytotoxic T lymphocytes by MHC class I.(Microbial infection) The membrane-associated isoform acts as an entry receptor for varicella-zoster virus (VZV).
Insulin-degrading enzyme, Abeta-degrading protease, Insulin protease, Insulysin, Insulinase, IDE
Rabbit Recombinant Monoclonal Insulin degrading enzyme / IDE antibody - conjugated to HRP. Suitable for WB and reacts with Human samples.
IgG
Rabbit
HRP
pH: 7.4
Preservative: 0.1% Proclin 300 Solution
Constituents: PBS, 30% Glycerol (glycerin, glycerine), 1% BSA
Liquid
Monoclonal
EPR6099
Affinity purification Protein A
Blue Ice
1-2 weeks
+4°C
-20°C
Upon delivery aliquot
Stable for 12 months at -20°C, Store in the dark
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
This supplementary information is collated from multiple sources and compiled automatically.
Insulin degrading enzyme (IDE) also known as insulinase is a zinc metalloprotease involved in the breakdown of small proteins including insulin. IDE has a molecular weight of approximately 110 kDa. It works by cleaving the peptide bonds of its substrate proteins therefore decreasing their molecular integrity. IDE is expressed in several tissues including the liver muscle and kidney where it plays a significant role in regulating metabolic processes. This protein can be found both within cells and in the extracellular space.
IDE manages the levels of insulin and other peptides by degrading them preventing accumulation and maintaining homeostasis. It is not part of a complex but it acts individually in cellular environments to modulate the concentration of its substrates. IDE is important for controlling insulin availability and turnover which impacts glucose metabolism. By influencing the degradation of insulin IDE aids in balancing metabolic demands with insulin availability.
IDE plays a vital role in insulin signaling and glucose metabolic processes. It is directly involved in the insulin signaling pathway by regulating insulin levels which consequently affects cellular responses to insulin. IDE connects with several proteins associated with these pathways including insulin receptor and glucose transporters ensuring proper cell signaling and metabolic functions. By modulating insulin levels IDE helps optimize glucose uptake and storage.
IDE has a relevant connection to Alzheimer's disease and type 2 diabetes. Its role in insulin degradation links it to type 2 diabetes where dysregulation of insulin levels can exacerbate the disease. IDE is also associated with Alzheimer's disease since it degrades amyloid-beta peptides. Any malfunction or altered expression of IDE can lead to accumulation of these peptides contributing to Alzheimer's pathology. In the context of these diseases IDE interacts with amyloid-beta precursor protein and components of insulin signaling pathways highlighting its significance in maintaining health and preventing disease progression.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
ab201836 was shown to specifically react with Insulin degrading enzyme / IDE in wild-type HAP1 cells as signal was lost in IDE (Insulin degrading enzyme / IDE) knockout cells. Wild-type and IDE (Insulin degrading enzyme / IDE) knockout samples were subjected to SDS-PAGE. ab201836 and Alexa Fluor® 680 Anti-GAPDH antibody [mAbcam 9484] - Loading Control ab184095 (Mouse monoclonal [mAbcam 9484] to GAPDH - Loading Control (Alexa Fluor® 680) loading control) were incubated overnight at 4°C at 1/5000 dilution and 1/20000 dilution respectively. The loading control was imaged using the Licor Odyssey CLx prior to blots being developed with ECL technique.
All lanes: Western blot - HRP Anti-Insulin degrading enzyme / IDE antibody [EPR6099] (ab201836) at 1/5000 dilution
Lane 1: Wild-type HAP1 whole cell lysate at 20 µg
Lane 2: IDE (Insulin degrading enzyme / IDE) knockout HAP1 whole cell lysate at 20 µg
Predicted band size: 118 kDa
Observed band size: 118 kDa
Exposure time: 20min
This blot was produced using a 4-12% Bis-tris gel under the MOPS buffer system. The gel was run at 200V for 50 minutes before being transferred onto a Nitrocellulose membrane at 30V for 70 minutes. The membrane was then blocked for an hour using 2% Bovine Serum Albumin before being incubated with ab201836 overnight at 4°C. Antibody binding was visualised using ECL development solution ECL Substrate Kit (High Sensitivity) ab133406.
All lanes: Western blot - HRP Anti-Insulin degrading enzyme / IDE antibody [EPR6099] (ab201836) at 1/5000 dilution
Lane 1: HeLa (Human epithelial carcinoma cell line) Whole Cell Lysate at 10 µg
Lane 2: HepG2 (Human hepatocellular liver carcinoma cell line) Whole Cell Lysate at 10 µg
Lane 3: A375 (Human melanoma cell line) Whole Cell Lysate at 10 µg
Lane 4: K562 (Human erythromyeloblastoid leukemia cell line) Nuclear Lysate at 10 µg
Developed using the ECL technique.
Performed under reducing conditions.
Predicted band size: 118 kDa
Observed band size: 118 kDa
Exposure time: 30s
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com