Skip to main content

Rabbit Polyclonal MTOR antibody. Suitable for WB, IHC-P and reacts with Mouse, Human samples. Cited in 5 publications. Immunogen corresponding to Recombinant Fragment Protein within Human MTOR aa 2350 to C-terminus.

Be the first to review this product! Submit a review

Images

Western blot - Anti-mTOR antibody - C-terminal (AB137341), expandable thumbnail
  • Western blot - Anti-mTOR antibody - C-terminal (AB137341), expandable thumbnail
  • Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-mTOR antibody - C-terminal (AB137341), expandable thumbnail

Publications

Key facts

Isotype
IgG
Host species
Rabbit
Storage buffer

pH: 7
Preservative: 0.025% Proclin 300
Constituents: 78% PBS, 20% Glycerol (glycerin, glycerine), 1% BSA

Form
Liquid
Clonality
Polyclonal

Immunogen

  • Recombinant Fragment Protein within Human MTOR aa 2350 to C-terminus. The exact immunogen used to generate this antibody is proprietary information. Database link P42345

Consider this alternative

Reactivity data

Select an application
Product promiseTestedExpectedPredictedNot recommended
WBIHC-P
Human
Tested
Tested
Mouse
Tested
Expected
Zebrafish
Predicted
Predicted

Tested
Tested

Species
Mouse
Dilution info
1/500 - 1/3000
Notes

-

Species
Human
Dilution info
1/500 - 1/3000
Notes

-

Predicted
Predicted

Species
Zebrafish
Dilution info
-
Notes

-

Tested
Tested

Species
Human
Dilution info
-
Notes

-

Expected
Expected

Species
Mouse
Dilution info
Use at an assay dependent concentration.
Notes

-

Predicted
Predicted

Species
Zebrafish
Dilution info
-
Notes

-

Associated Products

Select an associated product type

6 products for Alternative Product

Target data

Function

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton (PubMed:15268862, PubMed:15467718). mTORC2 plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1 (PubMed:15718470). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity).

Alternative names

Recommended products

Rabbit Polyclonal MTOR antibody. Suitable for WB, IHC-P and reacts with Mouse, Human samples. Cited in 5 publications. Immunogen corresponding to Recombinant Fragment Protein within Human MTOR aa 2350 to C-terminus.

Key facts

Isotype
IgG
Form
Liquid
Clonality
Polyclonal
Immunogen
  • Recombinant Fragment Protein within Human MTOR aa 2350 to C-terminus. The exact immunogen used to generate this antibody is proprietary information. Database link P42345
Purification technique
Affinity purification Immunogen
Concentration
Loading...

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage conditions
+4°C
Appropriate long-term storage conditions
-20°C
Aliquoting information
Upon delivery aliquot
Storage information
Avoid freeze / thaw cycle

Notes

Abcam is leading the way to address reproducibility in scientific research with our highly validated recombinant monoclonal and recombinant multiclonal antibodies. Search & select one of Abcam's thousands of recombinant alternatives to eliminate batch-variability and unnecessary animal use.

If you do not find a host species to meet your needs, our catalogue and custom Chimeric range provides scientists the specificity of Abcam's RabMAbs in the species backbone of your choice. Remember to also review our range of edited cell lines, proteins and biochemicals relevant to your target that may help you further your research goals.

Abcam antibodies are extensively validated in a wide range of species and applications, so please check the reagent specifications meet your scientific needs before purchasing. If you have any questions or bespoke requirements, simply visit the Contact Us page to send us an inquiry or contact our Support Team ahead of purchase.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

The mammalian target of rapamycin commonly known as mTOR is a serine/threonine kinase known for its role in cellular growth and metabolism. It has a molecular weight of approximately 289 kDa. mTOR is expressed in various tissues throughout the body including muscle adipose tissue and the brain. The protein functions as a central regulator of cell proliferation protein synthesis and nutrient signaling. Often researchers utilize mTOR ELISA or mTOR western blot (mTOR WB) methods and mTOR antibodies to study its expression and activity in various biological contexts.

Biological function summary

MTOR integrates signals from nutrients growth factors and cellular energy status to maintain cellular homeostasis. It forms part of two distinct complexes mTORC1 and mTORC2 which differ in their component proteins and downstream effects. mTORC1 primarily responds to amino acids and regulates protein synthesis through phosphorylation of key substrates like S6K1. On the other hand mTORC2 is important for maintaining cytoskeletal integrity and cell survival highlighting the protein's importance in diverse cellular processes.

Pathways

MTOR plays a pivotal role in the PI3K/AKT/mTOR pathway which governs cell growth proliferation and survival. It also has implications in the regulation of the AMPK pathway which senses cellular energy levels. Through these pathways mTOR interacts with proteins such as AKT and TSC2. The phospho-mTOR specifically the S2448 phospho-mTOR serves as an important functional marker in these signaling cascades linking extracellular signals to downstream cellular responses.

Associated diseases and disorders

MTOR has connections to cancer and neurodegenerative diseases. Its dysregulation often leads to uncontrolled cellular proliferation a hallmark of many cancers. Conditions such as tuberous sclerosis can occur due to mutations in proteins like TSC1 and TSC2 that regulate mTOR activity. In Alzheimer's disease mTOR's role in autophagy and protein synthesis becomes significant as imbalance may contribute to disease progression. Understanding these connections highlights the potential of targeting mTOR pathways therapeutically.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

3 product images

  • Western blot - Anti-mTOR antibody - C-terminal (ab137341), expandable thumbnail

    Western blot - Anti-mTOR antibody - C-terminal (ab137341)

    5% SDS PAGE

    All lanes: Western blot - Anti-mTOR antibody - C-terminal (ab137341) at 1/500 dilution

    All lanes: 293T whole cell lysate at 30 µg

    Predicted band size: 289 kDa

  • Western blot - Anti-mTOR antibody - C-terminal (ab137341), expandable thumbnail

    Western blot - Anti-mTOR antibody - C-terminal (ab137341)

    5% SDS PAGE

    All lanes: Western blot - Anti-mTOR antibody - C-terminal (ab137341) at 1/500 dilution

    All lanes: Mouse brain whole cell lysate at 30 µg

    Predicted band size: 289 kDa

  • Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-mTOR antibody - C-terminal (ab137341), expandable thumbnail

    Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-mTOR antibody - C-terminal (ab137341)

    Immunohistochemical analysis of paraffin-embedded HBL435 xenograft labelling mTOR with ab137341 at 1/500 dilution.

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com