Mouse Monoclonal OPA1 antibody. Suitable for Flow Cyt, WB and reacts with Human, Mouse, Rat samples. Cited in 13 publications.
pH: 7.5
Preservative: 0.02% Sodium azide
Constituents: 99% HEPES buffered saline
IP | Flow Cyt | ELISA | WB | |
---|---|---|---|---|
Human | Not recommended | Tested | Not recommended | Tested |
Mouse | Not recommended | Expected | Not recommended | Tested |
Rat | Not recommended | Expected | Not recommended | Tested |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat, Human | Dilution info - | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1 µg for 106 Cells | Notes ab170190 - Mouse monoclonal IgG1, is suitable for use as an isotype control with this antibody. |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat | Dilution info Use at an assay dependent concentration. | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Mouse, Rat, Human | Dilution info - | Notes - |
Species | Dilution info | Notes |
---|---|---|
Species Human | Dilution info 1 µg/mL | Notes - |
Species Mouse | Dilution info 1 µg/mL | Notes - |
Species Rat | Dilution info 1 µg/mL | Notes - |
Select an associated product type
Dynamin-related GTPase that is essential for normal mitochondrial morphology by mediating fusion of the mitochondrial inner membranes, regulating cristae morphology and maintaining respiratory chain function (PubMed:16778770, PubMed:17709429, PubMed:20185555, PubMed:24616225, PubMed:28628083, PubMed:28746876, PubMed:31922487, PubMed:32228866, PubMed:32567732, PubMed:33130824, PubMed:33237841, PubMed:37612504, PubMed:37612506). Exists in two forms: the transmembrane, long form (Dynamin-like GTPase OPA1, long form; L-OPA1), which is tethered to the inner mitochondrial membrane, and the short soluble form (Dynamin-like GTPase OPA1, short form; S-OPA1), which results from proteolytic cleavage and localizes in the intermembrane space (PubMed:31922487, PubMed:32228866, PubMed:33237841, PubMed:37612504, PubMed:37612506). Both forms (L-OPA1 and S-OPA1) cooperate to catalyze the fusion of the mitochondrial inner membrane (PubMed:31922487, PubMed:37612504, PubMed:37612506). The equilibrium between L-OPA1 and S-OPA1 is essential: excess levels of S-OPA1, produced by cleavage by OMA1 following loss of mitochondrial membrane potential, lead to an impaired equilibrium between L-OPA1 and S-OPA1, inhibiting mitochondrial fusion (PubMed:20038677, PubMed:31922487). The balance between L-OPA1 and S-OPA1 also influences cristae shape and morphology (By similarity). Involved in remodeling cristae and the release of cytochrome c during apoptosis (By similarity). Proteolytic processing by PARL in response to intrinsic apoptotic signals may lead to disassembly of OPA1 oligomers and release of the caspase activator cytochrome C (CYCS) into the mitochondrial intermembrane space (By similarity). Acts as a regulator of T-helper Th17 cells, which are characterized by cells with fused mitochondria with tight cristae, by mediating mitochondrial membrane remodeling: OPA1 is required for interleukin-17 (IL-17) production (By similarity). Its role in mitochondrial morphology is required for mitochondrial genome maintenance (PubMed:18158317, PubMed:20974897). Dynamin-like GTPase OPA1, long form. Constitutes the transmembrane long form (L-OPA1) that plays a central role in mitochondrial inner membrane fusion and cristae morphology (PubMed:31922487, PubMed:32228866, PubMed:37612504, PubMed:37612506). L-OPA1 and the soluble short form (S-OPA1) form higher-order helical assemblies that coordinate the fusion of mitochondrial inner membranes (PubMed:31922487, PubMed:37612504, PubMed:37612506). Inner membrane-anchored L-OPA1 molecules initiate membrane remodeling by recruiting soluble S-OPA1 to rapidly polymerize into a flexible cylindrical scaffold encaging the mitochondrial inner membrane (PubMed:37612504, PubMed:37612506). Once at the membrane surface, the formation of S-OPA1 helices induce bilayer curvature (PubMed:37612504, PubMed:37612506). OPA1 dimerization through the paddle region, which inserts into cardiolipin-containing membrane, promotes GTP hydrolysis and the helical assembly of a flexible OPA1 lattice on the membrane, which drives membrane curvature and mitochondrial fusion (PubMed:28628083, PubMed:37612504, PubMed:37612506). Plays a role in the maintenance and remodeling of mitochondrial cristae, some invaginations of the mitochondrial inner membrane that provide an increase in the surface area (PubMed:32567732, PubMed:33130824). Probably acts by forming helical filaments at the inside of inner membrane tubes with the shape and dimensions of crista junctions (By similarity). The equilibrium between L-OPA1 and S-OPA1 influences cristae shape and morphology: increased L-OPA1 levels promote cristae stacking and elongated mitochondria, while increased S-OPA1 levels correlated with irregular cristae packing and round mitochondria shape (By similarity). Dynamin-like GTPase OPA1, short form. Constitutes the soluble short form (S-OPA1) generated by cleavage by OMA1, which plays a central role in mitochondrial inner membrane fusion and cristae morphology (PubMed:31922487, PubMed:32228866, PubMed:32245890, PubMed:37612504, PubMed:37612506). The transmembrane long form (L-OPA1) and the S-OPA1 form higher-order helical assemblies that coordinate the fusion of mitochondrial inner membranes (PubMed:31922487, PubMed:32228866, PubMed:37612504, PubMed:37612506). Inner membrane-anchored L-OPA1 molecules initiate membrane remodeling by recruiting soluble S-OPA1 to rapidly polymerize into a flexible cylindrical scaffold encaging the mitochondrial inner membrane (PubMed:32228866, PubMed:37612504, PubMed:37612506). Once at the membrane surface, the formation of S-OPA1 helices induce bilayer curvature (PubMed:37612504, PubMed:37612506). OPA1 dimerization through the paddle region, which inserts into cardiolipin-containing membrane, promotes GTP hydrolysis and the helical assembly of a flexible OPA1 lattice on the membrane, which drives membrane curvature and mitochondrial fusion (PubMed:28628083, PubMed:37612504, PubMed:37612506). Excess levels of S-OPA1 produced by cleavage by OMA1 following stress conditions that induce loss of mitochondrial membrane potential, lead to an impaired equilibrium between L-OPA1 and S-OPA1, thereby inhibiting mitochondrial fusion (PubMed:20038677). Involved in mitochondrial safeguard in response to transient mitochondrial membrane depolarization by mediating flickering: cleavage by OMA1 leads to excess production of S-OPA1, preventing mitochondrial hyperfusion (By similarity). Plays a role in the maintenance and remodeling of mitochondrial cristae, some invaginations of the mitochondrial inner membrane that provide an increase in the surface area (PubMed:32245890). Probably acts by forming helical filaments at the inside of inner membrane tubes with the shape and dimensions of crista junctions (By similarity). The equilibrium between L-OPA1 and S-OPA1 influences cristae shape and morphology: increased L-OPA1 levels promote cristae stacking and elongated mitochondria, while increased S-OPA1 levels correlated with irregular cristae packing and round mitochondria shape (By similarity). Isoform 1. Coexpression of isoform 1 with shorter alternative products is required for optimal activity in promoting mitochondrial fusion. Isoform 4. Isoforms that contain the alternative exon 4b are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane. Isoform 5. Isoforms that contain the alternative exon 4b are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane.
KIAA0567, OPA1, Optic atrophy protein 1
Mouse Monoclonal OPA1 antibody. Suitable for Flow Cyt, WB and reacts with Human, Mouse, Rat samples. Cited in 13 publications.
pH: 7.5
Preservative: 0.02% Sodium azide
Constituents: 99% HEPES buffered saline
Purity is near homogeneity as judged by SDS-PAGE. ab119685 was produced in vitro using hybridomas grown in serum-free medium, and then concentrated by ammonium sulfate precipitation.
Abcam is leading the way to address reproducibility in scientific research with our highly validated recombinant monoclonal and recombinant multiclonal antibodies. Search & select one of Abcam's thousands of recombinant alternatives to eliminate batch-variability and unnecessary animal use.
If you do not find a host species to meet your needs, our catalogue and custom Chimeric range provides scientists the specificity of Abcam's RabMAbs in the species backbone of your choice. Remember to also review our range of edited cell lines, proteins and biochemicals relevant to your target that may help you further your research goals.
Abcam antibodies are extensively validated in a wide range of species and applications, so please check the reagent specifications meet your scientific needs before purchasing. If you have any questions or bespoke requirements, simply visit the Contact Us page to send us an inquiry or contact our Support Team ahead of purchase.
This antibody clone is manufactured by Abcam. If you require a custom buffer formulation or conjugation for your experiments, please contact orders@abcam.com
Product was previously marketed under the MitoSciences sub-brand.
OPA1 also known as optic atrophy 1 is a dynamin-related GTPase protein important for mitochondrial fusion. OPA1 has a molecular weight of about 120 kDa and is present mostly in the inner mitochondrial membrane. It promotes the maintenance of mitochondrial DNA cristae structures and the modulation of mitochondrial dynamics. Expression of OPA1 occurs in tissues with high energy demands including the retina brain and muscles. Detection of the OPA1 protein can be done using techniques such as Western blot and it reveals different isoforms generated through alternative splicing.
Mitochondrial dynamics involving OPA1 ensure energy production efficiency and cell health. OPA1 plays a role in mitochondrial fusion by forming a complex with mitofusins MFN1 and MFN2. This complex maintains the integrity of mitochondrial networks facilitates proper respiratory function and prevents apoptosis by regulating cristae junctions. It also participates in the stress response particularly in the preservation of the mitochondrial structure and function under challenging conditions.
OPA1 integrates into the mitochondrial fusion and fission pathways important for cellular energy metabolism. It works alongside proteins like DRP1 in balancing these processes. The involvement in these pathways is essential for cellular adaptation to metabolic needs and stress. OPA1 also has a relationship with the PINK1/Parkin pathway where its regulation affects mitophagy a process of clearing damaged mitochondria. These interactions highlight the importance of OPA1 in maintaining cellular and mitochondrial homeostasis.
Mutations in OPA1 have been linked to autosomal dominant optic atrophy and a range of neurodegenerative conditions. The protein’s dysfunction leads to the degeneration of the retinal ganglion cells and their axons resulting in vision loss. OPA1 also shows connections to disorders like Charcot-Marie-Tooth disease where its interaction with other proteins like MFN2 plays a role. Deficiency or dysfunction of OPA1 disrupts mitochondrial dynamics leading to cellular energy deficits and contributing to disease pathophysiology.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Overlay histogram showing SH-SY5Y cells stained with ab119685 (red line). The cells were fixed with 80% methanol (5 min) and then permeabilized with 0.1% PBS-Tween for 20 min. The cells were then incubated in 1x PBS / 10% normal goat serum / 0.3M glycine to block non-specific protein-protein interactions followed by the antibody (ab119685, 1μg/1x106 cells) for 30 min at 22°C. The secondary antibody used was Alexa Fluor® 488 goat anti-mouse IgG (H&L) (Goat Anti-Mouse IgG H&L (Alexa Fluor® 488) ab150113) at 1/2000 dilution for 30 min at 22°C. Isotype control antibody (black line) was mouse IgG1 [ICIGG1] (Mouse IgG1, Kappa Monoclonal [B11/6] - Isotype Control ab91353, 1μg/1x106 cells) used under the same conditions. Unlabelled sample (blue line) was also used as a control. Acquisition of >5,000 events were collected using a 20mW Argon ion laser (488nm) and 525/30 bandpass filter.
All lanes: Western blot - Anti-OPA1 antibody [1E81D9] (ab119685) at 1 µg/mL
Lane 1: whole cell lysates from HeLa cells(human) at 30 µg
Lane 2: whole cell lysates from H4IIE cells(rat) at 30 µg
Lane 3: whole cell lysates from MEF cells(mouse) at 30 µg
All lanes: HRP goat anti-mouse at 1/5000 dilution
Developed using the ECL technique.
Performed under reducing conditions.
Predicted band size: 111 kDa
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com