Rabbit Recombinant Monoclonal NR1D1 antibody - conjugated to PE.
IgG
Rabbit
PE
Ex: 480;565nm, Em: 578nm
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 98% PBS, 1% BSA
Liquid
Monoclonal
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application Antibody Labelling | Reactivity Expected | Dilution info - | Notes - |
Application Target Binding Affinity | Reactivity Expected | Dilution info - | Notes - |
Select an associated product type
Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity).
EAR1, HREV, THRAL, EAR1, HREV, THRAL, NR1D1, Nuclear receptor subfamily 1 group D member 1, Rev-erbA-alpha, V-erbA-related protein 1, EAR-1
Rabbit Recombinant Monoclonal NR1D1 antibody - conjugated to PE.
IgG
Rabbit
PE
Ex: 480;565nm, Em: 578nm
pH: 7.4
Preservative: 0.02% Sodium azide
Constituents: 98% PBS, 1% BSA
Liquid
Monoclonal
EPR10376
Affinity purification Protein A
Blue Ice
1-2 weeks
+4°C
+4°C
Upon delivery aliquot
Avoid freeze / thaw cycle, Store in the dark
This conjugated primary antibody is “made to order” and it is released using a quantitative quality control method that ensures binding affinity and labelling efficiency of the conjugate. Via leveraging the power of the Lightning-Link® conjugation technology, Abcam will deliver highly consistent recombinant conjugates in <2 weeks, giving you access to an ever growing portfolio of antibody-label combinations.
For suitable applications and species reactivity, please refer to the unconjugated version of this clone.
This product is FOR RESEARCH USE ONLY. For commercial use, please contact partnerships@abcam.com.
This conjugated primary antibody is released using a quantitative quality control method that evaluates binding affinity post-conjugation and efficiency of antibody labeling.
For suitable applications and species reactivity, please refer to the unconjugated version of this clone. This conjugated antibody is eligible for the Abcam trial program.
This product is a recombinant monoclonal antibody, which offers several advantages including:
For more information, read more on recombinant antibodies.
This supplementary information is collated from multiple sources and compiled automatically.
NR1D1 also known as Rev-Erbα is a nuclear receptor with a molecular weight of approximately 67 kDa. This protein acts as a transcriptional repressor and is a critical regulator of cyclic gene expression. NR1D1 binds to DNA and influences the transcription of genes by recruiting corepressor complexes reversing the activity of retinoic acid-related orphan receptors. It is expressed in various tissues including the liver adipose tissue and skeletal muscle highlighting its widespread significance in numerous biological processes.
NR1D1 modulates the circadian rhythm and metabolic pathways. It integrates into the circadian complex synchronizing the expression of clock genes with metabolic signals. It regulates genes involved in lipid metabolism glucose homeostasis and the inflammatory response. Through its oscillatory gene regulation NR1D1 ensures that the physiological processes align with the day-night cycle affecting energy balance and lipid storage.
NR1D1 functions significantly in the circadian rhythm and metabolism. It interacts with proteins like BMAL1 and CLOCK in the transcriptional feedback loop that generates circadian rhythms. Additionally NR1D1 involves itself in the regulation of the AMP-activated protein kinase (AMPK) pathway linking energy homeostasis to circadian regulation. These partnerships impact how the body manages energy during different phases of the day.
NR1D1 associates with metabolic diseases such as obesity and diabetes. Dysregulation of NR1D1 can contribute to metabolic syndrome by disrupting circadian timing and energy balance leading to compromised glucose and lipid metabolism. The protein also shows connections with inflammatory diseases given its role in modulating the inflammatory response. Aberrant NR1D1 activity can influence other proteins like NF-kB which is pivotal in inflammation and immune response pathways potentially exacerbating disease states.
We have tested this species and application combination and it works. It is covered by our product promise.
We have not tested this specific species and application combination in-house, but expect it will work. It is covered by our product promise.
This species and application combination has not been tested, but we predict it will work based on strong homology. However, this combination is not covered by our product promise.
We do not recommend this combination. It is not covered by our product promise.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com