Skip to main content

Rabbit Recombinant Monoclonal PHD3 antibody. Carrier free. Suitable for IP, WB, ICC/IF and reacts with Mouse, Rat, Human samples. Cited in 1 publication.

Be the first to review this product! Submit a review

Images

Immunoprecipitation - Anti-PHD3 antibody [EPR17869] - BSA and Azide free (AB238941), expandable thumbnail
  • Immunocytochemistry/ Immunofluorescence - Anti-PHD3 antibody [EPR17869] - BSA and Azide free (AB238941), expandable thumbnail
  • Immunocytochemistry/ Immunofluorescence - Anti-PHD3 antibody [EPR17869] - BSA and Azide free (AB238941), expandable thumbnail

Publications

Key facts

Isotype
IgG
Host species
Rabbit
Storage buffer

pH: 7.2 - 7.4
Constituents: PBS

Form
Liquid
Clonality
Monoclonal

Immunogen

  • The exact immunogen used to generate this antibody is proprietary information.

Reactivity data

Select an application
Product promiseTestedExpectedPredictedNot recommended
IPWBICC/IF
Human
Predicted
Expected
Predicted
Mouse
Tested
Expected
Expected
Rat
Expected
Expected
Tested

Tested
Tested

Species
Mouse
Dilution info
-
Notes

-

Expected
Expected

Species
Rat
Dilution info
Use at an assay dependent concentration.
Notes

-

Predicted
Predicted

Species
Human
Dilution info
-
Notes

-

Expected
Expected

Species
Mouse, Rat, Human
Dilution info
Use at an assay dependent concentration.
Notes

-

Tested
Tested

Species
Rat
Dilution info
-
Notes

-

Expected
Expected

Species
Mouse
Dilution info
Use at an assay dependent concentration.
Notes

-

Predicted
Predicted

Species
Human
Dilution info
-
Notes

-

Associated Products

Select an associated product type

1 product for Alternative Product

1 product for Alternative Version

Target data

Function

Prolyl hydroxylase that mediates hydroxylation of proline residues in target proteins, such as PKM, TELO2, ATF4 and HIF1A (PubMed:19584355, PubMed:20978507, PubMed:21483450, PubMed:21575608, PubMed:21620138, PubMed:22797300). Target proteins are preferentially recognized via a LXXLAP motif. Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins (PubMed:11595184, PubMed:12181324). Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A (PubMed:11595184, PubMed:12181324). Also hydroxylates HIF2A (PubMed:11595184, PubMed:12181324). Has a preference for the CODD site for both HIF1A and HIF2A (PubMed:11595184, PubMed:12181324). Hydroxylation on the NODD site by EGLN3 appears to require prior hydroxylation on the CODD site (PubMed:11595184, PubMed:12181324). Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:11595184, PubMed:12181324). Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes (PubMed:11595184, PubMed:12181324). ELGN3 is the most important isozyme in limiting physiological activation of HIFs (particularly HIF2A) in hypoxia. Also hydroxylates PKM in hypoxia, limiting glycolysis (PubMed:21483450, PubMed:21620138). Under normoxia, hydroxylates and regulates the stability of ADRB2 (PubMed:19584355). Regulator of cardiomyocyte and neuronal apoptosis. In cardiomyocytes, inhibits the anti-apoptotic effect of BCL2 by disrupting the BAX-BCL2 complex (PubMed:20849813). In neurons, has a NGF-induced proapoptotic effect, probably through regulating CASP3 activity (PubMed:16098468). Also essential for hypoxic regulation of neutrophilic inflammation (PubMed:21317538). Plays a crucial role in DNA damage response (DDR) by hydroxylating TELO2, promoting its interaction with ATR which is required for activation of the ATR/CHK1/p53 pathway (PubMed:22797300). Also mediates hydroxylation of ATF4, leading to decreased protein stability of ATF4 (Probable).

Alternative names

Recommended products

Rabbit Recombinant Monoclonal PHD3 antibody. Carrier free. Suitable for IP, WB, ICC/IF and reacts with Mouse, Rat, Human samples. Cited in 1 publication.

Key facts

Isotype
IgG
Form
Liquid
Clonality
Monoclonal
Immunogen
  • The exact immunogen used to generate this antibody is proprietary information.
Carrier free
Yes
Clone number
EPR17869
Purification technique
Affinity purification Protein A
Concentration
Loading...

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage conditions
+4°C
Appropriate long-term storage conditions
+4°C
Storage information
Do Not Freeze

Notes

ab238941 is the carrier-free version of Anti-PHD3 antibody [EPR17869] ab184714.

Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.

This product is a recombinant monoclonal antibody, which offers several advantages including:

  • - High batch-to-batch consistency and reproducibility
  • - Improved sensitivity and specificity
  • - Long-term security of supply
  • - Animal-free batch production

For more information, read more on recombinant antibodies.

Our carrier-free antibodies are typically supplied in a PBS-only formulation, purified and free of BSA, sodium azide and glycerol. The carrier-free buffer and high concentration allow for increased conjugation efficiency.

This conjugation-ready format is designed for use with fluorochromes, metal isotopes, oligonucleotides, and enzymes, which makes them ideal for antibody labelling, functional and cell-based assays, flow-based assays (e.g. mass cytometry) and Multiplex Imaging applications.

Use our conjugation kits for antibody conjugates that are ready-to-use in as little as 20 minutes with 1 minute hands-on-time and 100% antibody recovery: available for fluorescent dyes, HRP, biotin and gold.

This product is compatible with the Maxpar® Antibody Labeling Kit from Fluidigm, without the need for antibody preparation. Maxpar® is a trademark of Fluidigm Canada Inc.

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

The PHD3 protein also known as EGLN3 or Prolyl Hydroxylase Domain-Containing Protein 3 functions mechanically to regulate oxygen homeostasis in cells. It catalyzes the hydroxylation of proline residues on hypoxia-inducible transcription factors (HIFs). The molecular mass of PHD3 is approximately 27 kDa. PHD3 expresses in a variety of tissues notably in the heart brain and skeletal muscles. Its expression often occurs in response to hypoxic conditions reflecting its role in oxygen sensing and adaptation to change in oxygen levels.

Biological function summary

The PHD3 protein plays an essential role in regulating the degradation of HIFs preventing their accumulation under normoxic conditions. It is part of a larger complex which includes oxygen iron and 2-oxoglutarate facilitating its hydroxylase activity. Hydroxylation of HIFs by PHD3 marks them for degradation via the ubiquitin-proteasome pathway preventing HIFs from activating genes related to erythropoiesis angiogenesis and cellular metabolism adaptation to hypoxia. Through these actions PHD3 helps maintain cellular oxygen homeostasis and metabolic balance.

Pathways

PHD3 is integral to the HIF signaling pathway and the cellular response to hypoxia. Its interaction with HIF-1α and HIF-2α is important in this context dictating the stability and activity of these transcription factors under varying oxygen levels. PHD3 also associates with other prolyl hydroxylases such as PHD1 and PHD2 coordinating the regulation of HIFs collectively across different cell types and conditions. These interactions contribute to the modulation of gene expression in response to hypoxic stress.

Associated diseases and disorders

Aberrant PHD3 activity links to cancer and ischemic diseases. In cancer altered PHD3 expression affects tumor growth and metastasis by disrupting normal oxygen sensing allowing cancer cells to adapt to low-oxygen environments. Moreover PHD3's interaction with proteins like HIF-1α and HIF-2α plays a role in the pathological angiogenesis seen in certain cancer types. In ischemic diseases improper regulation by PHD3 might impede normal tissue responses to reduced blood flow affecting recovery. Its specific modulation in diseases presents potential therapeutic targets for drug development.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

3 product images

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com