Human Insulin degrading enzyme / IDE peptide is a Synthetic blocking peptide. >90% purity and suitable for BL.
>90% HPLC
Tag free
BL
No
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application BL | Reactivity Reacts | Dilution info - | Notes - |
Select an associated product type
Plays a role in the cellular breakdown of insulin, APP peptides, IAPP peptides, natriuretic peptides, glucagon, bradykinin, kallidin, and other peptides, and thereby plays a role in intercellular peptide signaling (PubMed:10684867, PubMed:17051221, PubMed:17613531, PubMed:18986166, PubMed:19321446, PubMed:21098034, PubMed:2293021, PubMed:23922390, PubMed:24847884, PubMed:26394692, PubMed:26968463, PubMed:29596046). Substrate binding induces important conformation changes, making it possible to bind and degrade larger substrates, such as insulin (PubMed:23922390, PubMed:26394692, PubMed:29596046). Contributes to the regulation of peptide hormone signaling cascades and regulation of blood glucose homeostasis via its role in the degradation of insulin, glucagon and IAPP (By similarity). Plays a role in the degradation and clearance of APP-derived amyloidogenic peptides that are secreted by neurons and microglia (Probable) (PubMed:26394692, PubMed:9830016). Degrades the natriuretic peptides ANP, BNP and CNP, inactivating their ability to raise intracellular cGMP (PubMed:21098034). Also degrades an aberrant frameshifted 40-residue form of NPPA (fsNPPA) which is associated with familial atrial fibrillation in heterozygous patients (PubMed:21098034). Involved in antigen processing. Produces both the N terminus and the C terminus of MAGEA3-derived antigenic peptide (EVDPIGHLY) that is presented to cytotoxic T lymphocytes by MHC class I.(Microbial infection) The membrane-associated isoform acts as an entry receptor for varicella-zoster virus (VZV).
Insulin-degrading enzyme, Abeta-degrading protease, Insulin protease, Insulysin, Insulinase, IDE
Human Insulin degrading enzyme / IDE peptide is a Synthetic blocking peptide. >90% purity and suitable for BL.
>90% HPLC
Tag free
BL
No
No
Human
Constituents: 0.87% Sodium chloride, 0.714% HEPES, 0.0584% EDTA, 0.001% Sorbitan monolaurate, ethoxylated
Lyophilized
Plays a role in the cellular breakdown of insulin, APP peptides, IAPP peptides, natriuretic peptides, glucagon, bradykinin, kallidin, and other peptides, and thereby plays a role in intercellular peptide signaling (PubMed:10684867, PubMed:17051221, PubMed:17613531, PubMed:18986166, PubMed:19321446, PubMed:21098034, PubMed:2293021, PubMed:23922390, PubMed:24847884, PubMed:26394692, PubMed:26968463, PubMed:29596046). Substrate binding induces important conformation changes, making it possible to bind and degrade larger substrates, such as insulin (PubMed:23922390, PubMed:26394692, PubMed:29596046). Contributes to the regulation of peptide hormone signaling cascades and regulation of blood glucose homeostasis via its role in the degradation of insulin, glucagon and IAPP (By similarity). Plays a role in the degradation and clearance of APP-derived amyloidogenic peptides that are secreted by neurons and microglia (Probable) (PubMed:26394692, PubMed:9830016). Degrades the natriuretic peptides ANP, BNP and CNP, inactivating their ability to raise intracellular cGMP (PubMed:21098034). Also degrades an aberrant frameshifted 40-residue form of NPPA (fsNPPA) which is associated with familial atrial fibrillation in heterozygous patients (PubMed:21098034). Involved in antigen processing. Produces both the N terminus and the C terminus of MAGEA3-derived antigenic peptide (EVDPIGHLY) that is presented to cytotoxic T lymphocytes by MHC class I.
Belongs to the peptidase M16 family.
The N-terminus is blocked.
Blue Ice
Ambient
-20°C
Upon delivery aliquot
Avoid freeze / thaw cycle
- First try to dissolve a small amount of peptide in either water or buffer. The more charged residues on a peptide, the more soluble it is in aqueous solutions.
- If the peptide doesn't dissolve try an organic solvent e.g. DMSO, then dilute using water or buffer.
- Consider that any solvent used must be compatible with your assay. If a peptide does not dissolve and you need to recover it, lyophilise to remove the solvent.
- Gentle warming and sonication can effectively aid peptide solubilisation. If the solution is cloudy or has gelled the peptide may be in suspension rather than solubilised.
- Peptides containing cysteine are easily oxidised, so should be prepared in solution just prior to use.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com