Skip to main content

Recombinant human AKT1 protein is a Human Full Length protein, in the 1 to 480 aa range, expressed in Baculovirus infected Sf9, with >70% purity and suitable for SDS-PAGE, WB, FuncS.

This product has no reviews yet! Submit a review
Purity

>70% SDS-PAGE

Expression system

Baculovirus infected Sf9 cells

Tags

His tag N-Terminus

Applications

SDS-PAGE, WB, FuncS

Biologically active

Yes

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Shipping To:
United States

Reactivity data

Application
SDS-PAGE
Reactivity
Reacts
Dilution info
-
Notes

-

Application
WB
Reactivity
Reacts
Dilution info
-
Notes

Ab79792 can be used as a WB positive control in conjunction with ab91505.

Application
FuncS
Reactivity
Reacts
Dilution info
-
Notes

Kinase assay

Images

Recommended products

  1. Loading...
  2. Loading...
  3. Loading...
  4. Loading...

Recombinant human AKT1 protein is a Human Full Length protein, in the 1 to 480 aa range, expressed in Baculovirus infected Sf9, with >70% purity and suitable for SDS-PAGE, WB, FuncS.

Key facts

Purity

>70% SDS-PAGE

Expression system

Baculovirus infected Sf9 cells

Applications

SDS-PAGE, WB, FuncS

Biological activity

The purified AKT1 is activated in vitro using PDK1 enzyme.

Specific Activity: 12.32 pmol/min/μg.

Enzyme reaction is conducted in a buffer containing 50 mM HEPES (pH 7.5), 10 mM MgCl2, 1 mM EGTA, 200 μM ATP, 0.01% Brij-35, and 2 μM substrate at room temperature for 1 hour.

Amino acids

1 to 480

Accession
P31749-1
Protein length

Full Length

Animal free

No

Nature

Recombinant

Species

Human

Concentration
Loading...
Storage buffer

pH: 8
Constituents: 50% Glycerol (glycerin, glycerine), 0.58% Sodium chloride, 0.395% Tris HCl, 0.05% Tween, 0.0462% (R*,R*)-1,4-Dimercaptobutan-2,3-diol

Specifications

Form

Liquid

Additional notes

Affinity purified.

General info

Function

AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:15861136, PubMed:15526160, PubMed:11882383, PubMed:21620960, PubMed:21432781, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:15526160, PubMed:11882383, PubMed:21620960, PubMed:21432781, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:15526160, PubMed:11882383, PubMed:21620960, PubMed:21432781). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF-I (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174, PubMed:20231902). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173).

Sequence similarities

Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. RAC subfamily.

Post-translational modifications

O-GlcNAcylation at Thr-305 and Thr-312 inhibits activating phosphorylation at Thr-308 via disrupting the interaction between AKT1 and PDPK1. O-GlcNAcylation at Ser-473 also probably interferes with phosphorylation at this site.

Subcellular localisation

Nucleus

Storage

Shipped at conditions

Dry Ice

Appropriate long-term storage conditions

-80°C

Aliquoting information

Upon delivery aliquot

Storage information

Avoid freeze / thaw cycle

This product is an active protein and may elicit a biological response in vivo, handle with caution.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com

There was a problem

We can’t download that datasheet. Please try again. If you need help, contact our Customer Services team at technical@abcam.com