Recombinant human Apolipoprotein E (ApoE) is a Human Full Length ApoE protein in the 19 to 317 aa range with >=95% purity, <= 0.005 EU/µg endotoxin level and suitable for SDS-PAGE, mass spectrometry and HPLC. The predicted molecular weight of ab280330 recombinant protein is 34 kDa.
- Save time and ensure accurate results - use our recombinant Apolipoprotein E protein (ApoE) as a control
- Available in different sizes to fit your experimental needs
K V E Q A V E T E P E P E L R Q Q T E W Q S G Q R W E L A L G R F W D Y L R W V Q T L S E Q V Q E E L L S S Q V T Q E L R A L M D E T M K E L K A Y K S E L E E Q L T P V A E E T R A R L S K E L Q A A Q A R L G A D M E D V C G R L V Q Y R G E V Q A M L G Q S T E E L R V R L A S H L R K L R K R L L R D A D D L Q K R L A V Y Q A G A R E G A E R G L S A I R E R L G P L V E Q G R V R A A T V G S L A G Q P L Q E R A Q A W G E R L R A R M E E M G S R T R D R L D E V K E Q V A E V R A K L E E Q A Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R Q W A G L V E K V Q A A V G T S A A P V P S D N H
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application SDS-PAGE | Reactivity Reacts | Dilution info - | Notes - |
Application MS | Reactivity Reacts | Dilution info - | Notes - |
Application HPLC | Reactivity Reacts | Dilution info - | Notes - |
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids (PubMed:14754908, PubMed:1911868, PubMed:6860692). APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance (PubMed:14754908, PubMed:1911868, PubMed:1917954, PubMed:23620513, PubMed:2762297, PubMed:6860692, PubMed:9395455). Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma (PubMed:2762297, PubMed:6860692, PubMed:9395455). As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL) (PubMed:1911868, PubMed:6860692). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles (PubMed:12950167, PubMed:1530612, PubMed:1917954, PubMed:20030366, PubMed:20303980, PubMed:2063194, PubMed:2762297, PubMed:7635945, PubMed:7768901, PubMed:8756331, PubMed:8939961). Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells (PubMed:23676495, PubMed:7635945, PubMed:9395455, PubMed:9488694). A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes (PubMed:1911868, PubMed:1917954, PubMed:23676495, PubMed:29516132, PubMed:9395455). APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues (PubMed:2762297, PubMed:29516132). By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis (PubMed:1917954, PubMed:2762297, PubMed:29516132). APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis (PubMed:14754908, PubMed:23620513, PubMed:9395455). First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues (PubMed:14754908, PubMed:23620513). Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes (PubMed:9395455). APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting (PubMed:25173806, PubMed:8939961). APOE is also involved in innate and adaptive immune responses, controlling for instance the survival of myeloid-derived suppressor cells (By similarity). Binds to the immune cell receptor LILRB4 (PubMed:30333625). APOE may also play a role in transcription regulation through a receptor-dependent and cholesterol-independent mechanism, that activates MAP3K12 and a non-canonical MAPK signal transduction pathway that results in enhanced AP-1-mediated transcription of APP (PubMed:28111074). (Microbial infection) Through its interaction with HCV envelope glycoprotein E2, participates in the attachment of HCV to HSPGs and other receptors (LDLr, VLDLr, and SR-B1) on the cell surface and to the assembly, maturation and infectivity of HCV viral particles (PubMed:25122793, PubMed:29695434). This interaction is probably promoted via the up-regulation of cellular autophagy by the virus (PubMed:29695434).
Apolipoprotein E, Apo-E, APOE
Recombinant human Apolipoprotein E (ApoE) is a Human Full Length ApoE protein in the 19 to 317 aa range with >=95% purity, <= 0.005 EU/µg endotoxin level and suitable for SDS-PAGE, mass spectrometry and HPLC. The predicted molecular weight of ab280330 recombinant protein is 34 kDa.
- Save time and ensure accurate results - use our recombinant Apolipoprotein E protein (ApoE) as a control
- Available in different sizes to fit your experimental needs
pH: 7.4
Constituents: 10.26% Trehalose, 0.727% Dibasic monohydrogen potassium phosphate, 0.248% Potassium phosphate monobasic
>=95% Purity by HPLC
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids (PubMed:14754908, PubMed:1911868, PubMed:6860692). APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance (PubMed:14754908, PubMed:1911868, PubMed:1917954, PubMed:23620513, PubMed:2762297, PubMed:6860692, PubMed:9395455). Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma (PubMed:2762297, PubMed:6860692, PubMed:9395455). As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL) (PubMed:1911868, PubMed:6860692). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles (PubMed:12950167, PubMed:1530612, PubMed:1917954, PubMed:20030366, PubMed:20303980, PubMed:2063194, PubMed:2762297, PubMed:7635945, PubMed:7768901, PubMed:8756331, PubMed:8939961). Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells (PubMed:23676495, PubMed:7635945, PubMed:9395455, PubMed:9488694). A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes (PubMed:1911868, PubMed:1917954, PubMed:23676495, PubMed:29516132, PubMed:9395455). APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues (PubMed:2762297, PubMed:29516132). By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis (PubMed:1917954, PubMed:2762297, PubMed:29516132). APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis (PubMed:14754908, PubMed:23620513, PubMed:9395455). First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues (PubMed:14754908, PubMed:23620513). Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes (PubMed:9395455). APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting (PubMed:25173806, PubMed:8939961). APOE is also involved in innate and adaptive immune responses, controlling for instance the survival of myeloid-derived suppressor cells (By similarity). Binds to the immune cell receptor LILRB4 (PubMed:30333625). APOE may also play a role in transcription regulation through a receptor-dependent and cholesterol-independent mechanism, that activates MAP3K12 and a non-canonical MAPK signal transduction pathway that results in enhanced AP-1-mediated transcription of APP (PubMed:28111074).
Belongs to the apolipoprotein A1/A4/E family.
APOE exists as multiple glycosylated and sialylated glycoforms within cells and in plasma (PubMed:29516132). The extent of glycosylation and sialylation are tissue and context specific (PubMed:29516132). Plasma APOE undergoes desialylation and is less glycosylated and sialylated than the cellular form (PubMed:19838169, PubMed:20511397, PubMed:23234360, PubMed:2498325). Glycosylation is not required for proper expression and secretion (PubMed:2498325). O-glycosylated with core 1 or possibly core 8 glycans. Thr-307 and Ser-314 are minor glycosylation sites compared to Ser-308 (PubMed:19838169, PubMed:23234360).
Ensure the validity of your result using our recombinant human Apolipoprotein E (ApoE) ab280330 as a control.
The ab280330 ApoE protein is sourced from HEK293 cells and can be used as a positive control in SDS-PAGE, mass spectrometry and HPLC.
Check out our protein gel staining guide for SDS-PAGE here
Apolipoprotein E (ApoE) also known as apolipoprotein e or apoE is a major protein involved in lipid metabolism. It has an approximate molecular weight of 34 kDa. This protein is mainly produced in the liver and brain where it plays a critical role in transporting lipoproteins fat-soluble vitamins and cholesterol. ApoE exists in three common isoforms: ApoE2 ApoE3 and ApoE4 each having different impacts on lipid binding and metabolic processes. Scientists often use an ApoE ELISA kit to quantify this protein in various samples providing insights into its expression in health and disease.
Four words that are not the target name include ApoE's role as a constituent of chylomicrons VLDL and HDL particles. ApoE mediates the binding internalization and catabolism of these lipoprotein particles facilitating their interaction with specific cell-surface receptors such as the LDL receptor. This protein operates as part of a complex that includes various other apolipoproteins and lipid molecules. The study of mouse apoe using tools like a mouse apoe ELISA provides valuable data due to its similar physiological functions in lipid transport and metabolism.
Four words that are not the target name include the involvement of ApoE in lipid metabolism and cardiovascular disease pathways. In the lipid metabolism pathway ApoE interacts with proteins such as the LDL receptor influencing the clearance of chylomicron remnants and VLDL from the bloodstream. In the cardiovascular disease pathway this protein impacts cholesterol levels and promotes plaques stabilization. ApoE's role in these pathways offers insights into its interaction with related proteins like apolipoprotein B and LDL receptor which are critical for maintaining lipid equilibrium.
Four words that are not the target name include ApoE's association with Alzheimer’s disease and cardiovascular diseases. In Alzheimer’s disease ApoE4 isoform has a higher risk factor compared to ApoE3 and ApoE2 contributing to amyloid plaque formation through interactions with amyloid precursor protein. In cardiovascular diseases ApoE abnormalities influence atherosclerosis development with ApoE-deficient models showing increased susceptibility. ApoE's links to these diseases also connect it to other key proteins such as presenilin-1 in Alzheimer's disease and apolipoprotein B in cardiovascular disorders highlighting its extensive biological impact.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
SDS-PAGE analysis of ab280330
Mass determination by ESI-TOF.
Predicted MW is 34293.74 Da. (+/- 10 Da by ESI-TOF). Observes MW is 34295.01 Da. Additional masses at 34660.26 and 34863.18 are due to residual O-glycans.
HPLC analysis of ab280330
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com