Skip to main content

Recombinant Human ERK2 protein is a Human Full Length protein, expressed in Escherichia coli, with >90% purity and suitable for WB, FuncS.

This product has no reviews yet! Submit a review
Purity

>90% Densitometry

Expression system

Escherichia coli

Tags

Tag free

Applications

WB, FuncS

Biologically active

No

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Shipping To:
United States

Reactivity data

Application
WB
Reactivity
Reacts
Dilution info
-
Notes

-

Application
FuncS
Reactivity
Reacts
Dilution info
-
Notes

Kinase assay.

Images

Target data

Recommended products

  1. Loading...
  2. Loading...
  3. Loading...
  4. Loading...

Recombinant Human ERK2 protein is a Human Full Length protein, expressed in Escherichia coli, with >90% purity and suitable for WB, FuncS.

Key facts

Purity

>90% Densitometry

Expression system

Escherichia coli

Applications

WB, FuncS

Accession
P28482-1
Protein length

Full Length

Animal free

No

Nature

Recombinant

Species

Human

Concentration
Loading...
Storage buffer

pH: 7.5
Constituents: 25% Glycerol (glycerin, glycerine), 0.87% Sodium chloride, 0.79% Tris HCl, 0.00385% (R*,R*)-1,4-Dimercaptobutan-2,3-diol, 0.0038% EGTA, 0.00292% EDTA, 0.00174% PMSF

Specifications

Form

Liquid

General info

Function

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity).

Sequence similarities

Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.

Post-translational modifications

Phosphorylated upon KIT and FLT3 signaling (By similarity). Dually phosphorylated on Thr-185 and Tyr-187, which activates the enzyme. Undergoes regulatory phosphorylation on additional residues such as Ser-246 and Ser-248 in the kinase insert domain (KID) These phosphorylations, which are probably mediated by more than one kinase, are important for binding of MAPK1/ERK2 to importin-7 (IPO7) and its nuclear translocation. In addition, autophosphorylation of Thr-190 was shown to affect the subcellular localization of MAPK1/ERK2 as well. Ligand-activated ALK induces tyrosine phosphorylation. Dephosphorylated by PTPRJ at Tyr-187. Phosphorylation on Ser-29 by SGK1 results in its activation by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. DUSP3 and DUSP6 dephosphorylate specifically MAPK1/ERK2 and MAPK3/ERK1 whereas DUSP9 dephosphorylates a broader range of MAPKs. Dephosphorylated by DUSP1 at Thr-185 and Tyr-187.

Subcellular localisation

Cytoskeleton, Spindle, Nucleus, Microtubule organizing center, Centrosome

Storage

Shipped at conditions

Dry Ice

Appropriate long-term storage conditions

-80°C

Aliquoting information

Upon delivery aliquot

Storage information

Avoid freeze / thaw cycle

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com

There was a problem

We can’t download that datasheet. Please try again. If you need help, contact our Customer Services team at technical@abcam.com