Skip to main content

Recombinant Human ERK2 protein is a Human Full Length protein, expressed in Escherichia coli, with >95% purity and suitable for SDS-PAGE.

Be the first to review this product! Submit a review

Images

SDS-PAGE - Recombinant Human ERK2 protein (AB95379), expandable thumbnail

Key facts

Purity
>95% SDS-PAGE
Expression system
Escherichia coli
Tags
Tag free
Applications
SDS-PAGE
Biologically active
No

Amino acid sequence

M G S S H H H H H H S S G L V P R G S H M A A A A A A G A G P E M V R G Q V F D V G P R Y T N L S Y I G E G A Y G M V C S A Y D N V N K V R V A I K K I S P F E H Q T Y C Q R T L R E I K I L L R F R H E N I I G I N D I I R A P T I E Q M K D V Y I V Q D L M E T D L Y K L L K T Q H L S N D H I C Y F L Y Q I L R G L K Y I H S A N V L H R D L K P S N L L L N T T C D L K I C D F G L A R V A D P D H D H T G F L T E Y V A T R W Y R A P E I M L N S K G Y T K S I D I W S V G C I L A E M L S N R P I F P G K H Y L D Q L N H I L G I L G S P S Q E D L N C I I N L K A R N Y L L S L P H K N K V P W N R L F P N A D S K A L D L L D K M L T F N P H K R I E V E Q A L A H P Y L E Q Y Y D P S D E P I A E A P F K F D M E L D D L P K E K L K E L I F E E T A R F Q P G Y R S

Reactivity data

Application
SDS-PAGE
Reactivity
Reacts
Dilution info
-
Notes

-

Associated Products

Select an associated product type

4 products for Alternative Product

Target data

Function

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1 and FXR1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity). Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity.

Alternative names

Recommended products

Recombinant Human ERK2 protein is a Human Full Length protein, expressed in Escherichia coli, with >95% purity and suitable for SDS-PAGE.

Key facts

Purity
>95% SDS-PAGE
Expression system
Escherichia coli
Applications
SDS-PAGE
Accession
P28482-1
Animal free
No
Species
Human
Concentration
Loading...
Storage buffer

pH: 8
Constituents: 10% Glycerol (glycerin, glycerine), 0.316% Tris HCl, 0.0154% (R*,R*)-1,4-Dimercaptobutan-2,3-diol

Sequence info

Amino acid sequence

M G S S H H H H H H S S G L V P R G S H M A A A A A A G A G P E M V R G Q V F D V G P R Y T N L S Y I G E G A Y G M V C S A Y D N V N K V R V A I K K I S P F E H Q T Y C Q R T L R E I K I L L R F R H E N I I G I N D I I R A P T I E Q M K D V Y I V Q D L M E T D L Y K L L K T Q H L S N D H I C Y F L Y Q I L R G L K Y I H S A N V L H R D L K P S N L L L N T T C D L K I C D F G L A R V A D P D H D H T G F L T E Y V A T R W Y R A P E I M L N S K G Y T K S I D I W S V G C I L A E M L S N R P I F P G K H Y L D Q L N H I L G I L G S P S Q E D L N C I I N L K A R N Y L L S L P H K N K V P W N R L F P N A D S K A L D L L D K M L T F N P H K R I E V E Q A L A H P Y L E Q Y Y D P S D E P I A E A P F K F D M E L D D L P K E K L K E L I F E E T A R F Q P G Y R S
Accession
P28482
Protein length
Full Length
Nature
Recombinant

Specifications

Form
Liquid
Additional notes

purified by using conventional chromatography techniques

General info

Function

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1 and FXR1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity).

Sequence similarities

Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.

Post-translational modifications

Phosphorylated upon KIT and FLT3 signaling (By similarity). Dually phosphorylated on Thr-185 and Tyr-187, which activates the enzyme. Undergoes regulatory phosphorylation on additional residues such as Ser-246 and Ser-248 in the kinase insert domain (KID) These phosphorylations, which are probably mediated by more than one kinase, are important for binding of MAPK1/ERK2 to importin-7 (IPO7) and its nuclear translocation. In addition, autophosphorylation of Thr-190 was shown to affect the subcellular localization of MAPK1/ERK2 as well. Ligand-activated ALK induces tyrosine phosphorylation. Dephosphorylated by PTPRJ at Tyr-187. Phosphorylation on Ser-29 by SGK1 results in its activation by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. DUSP3 and DUSP6 dephosphorylate specifically MAPK1/ERK2 and MAPK3/ERK1 whereas DUSP9 dephosphorylates a broader range of MAPKs. Dephosphorylated by DUSP1 and DUSP2 at Thr-185 and Tyr-187 (By similarity) (PubMed:16288922).

Subcellular localisation
Cytoskeleton, Spindle, Nucleus, Microtubule organizing center, Centrosome

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage duration
1-2 weeks
Appropriate short-term storage conditions
+4°C
Appropriate long-term storage conditions
-20°C
Aliquoting information
Upon delivery aliquot
Storage information
Avoid freeze / thaw cycle

Supplementary info

This supplementary information is collated from multiple sources and compiled automatically.
Activity summary

ERK2 also known as Extracellular signal-Regulated Kinase 2 is a serine/threonine protein kinase in the mitogen-activated protein kinase (MAPK) family with a mass of approximately 42 kDa. This kinase is expressed in many cell types and tissues including the brain liver and lungs. ERK2 plays a significant role in cellular processes such as proliferation differentiation and survival. It is often analyzed using specific assays including ERK2 ELISA and examination of cell lysate samples to determine expression levels and activity.

Biological function summary

ERK2 influences several key cellular functions. It functions as part of a signaling cascade transmitting signals from the exterior to the cell nucleus. In this cascade ERK2 is often part of a multi-protein complex that undergoes sequential phosphorylation. Through these mechanisms ERK2 regulates gene expression and is a pivotal component of the MAPK/ERK pathway ensuring the proper response to growth signals and stress stimuli.

Pathways

ERK2 is a central component of the MAPK/ERK signaling pathway and the PI3K/AKT pathway. These pathways play critical roles in cell cycle regulation and apoptosis. ERK2 activation leads to its interaction with the MEK1/2 proteins which further allows the transmission of mitogenic signals. The interplay between ERK2 and related proteins like E460 often impacts cellular growth and development as it precisely controls the phosphorylation events within the pathway.

Associated diseases and disorders

ERK2 is connected to certain types of cancer and neurodegenerative diseases. Aberrations in ERK2 signaling pathways are often linked to tumorigenesis where altered interaction with proteins such as Raf and MEK1/2 disrupts cell cycle regulation and apoptosis. In neurodegenerative disorders dysregulated ERK2 activity has been associated with proteins contributing to Alzheimer’s disease indicating its involvement in neuronal survival and stress response mechanisms.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

1 product image

  • SDS-PAGE - Recombinant Human ERK2 protein (ab95379), expandable thumbnail

    SDS-PAGE - Recombinant Human ERK2 protein (ab95379)

    15% SDS-PAGE image (3ug) generated using ab95379

Downloads

Product protocols

For this product, it's our understanding that no specific protocols are required. You can:

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

For licensing inquiries, please contact partnerships@abcam.com