Recombinant Human Notch1 protein is a Human Fragment protein, in the 23 to 132 aa range, expressed in Wheat germ and suitable for SDS-PAGE, ELISA, WB.
R C S Q P G E T C L N G G K C E A A N G T E A C V C G G A F V G P R C Q D P N P C L S T P C K N A G T C H V V D R R G V A D Y A C S C A L G F S G P L C L T P L D N A C L T N P C R N G G T C D L L T L T E Y K C R C P P G
Application | Reactivity | Dilution info | Notes |
---|---|---|---|
Application SDS-PAGE | Reactivity Reacts | Dilution info - | Notes - |
Application ELISA | Reactivity Reacts | Dilution info - | Notes - |
Application WB | Reactivity Reacts | Dilution info - | Notes (Recombinant protein) |
Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO).
TAN1, NOTCH1, Neurogenic locus notch homolog protein 1, Notch 1, hN1, Translocation-associated notch protein TAN-1
Recombinant Human Notch1 protein is a Human Fragment protein, in the 23 to 132 aa range, expressed in Wheat germ and suitable for SDS-PAGE, ELISA, WB.
pH: 8
Constituents: 0.79% Tris HCl, 0.3% Glutathione
Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO).
Belongs to the NOTCH family.
Synthesized in the endoplasmic reticulum as an inactive form which is proteolytically cleaved by a furin-like convertase in the trans-Golgi network before it reaches the plasma membrane to yield an active, ligand-accessible form (By similarity). Cleavage results in a C-terminal fragment N(TM) and a N-terminal fragment N(EC). Following ligand binding, it is cleaved by ADAM17 to yield a membrane-associated intermediate fragment called notch extracellular truncation (NEXT) (PubMed:24226769). Following endocytosis, this fragment is then cleaved by one of the catalytic subunits of gamma-secretase (PSEN1 or PSEN2), to release a Notch-derived peptide containing the intracellular domain (NICD) from the membrane (PubMed:30598546).
Notch1 also known as Notch-1 is a transmembrane receptor involved in cell fate decisions. It belongs to the Notch protein family and has a molecular weight of around 270 kDa. Notch1 is expressed widely particularly in tissues such as blood cells and neuronal tissue. The receptor consists of extracellular EGF-like repeats a transmembrane domain and an intracellular domain that translocates to the nucleus upon activation. Notch1 plays a critical role in intercellular communication through ligand engagement which then triggers a series of proteolytic cleavages that release the Notch intracellular domain (NICD) for nuclear translocation.
Notch1 is essential in various cellular processes including differentiation proliferation and apoptosis. It functions as part of a complex signaling pathway that regulates these processes. Notch1 interacts with other elements like Jagged and Delta/Serrate/LAG-2 (DSL) family ligands to control gene expression patterns that determine cell lineage outcomes. This interaction affects the development of many systems such as the immune and nervous systems. Consequently Notch1 significantly influences the formation of organs and the maintenance of stem cell populations.
Notch1 plays a significant role in both the Notch signaling and the Wnt signaling pathways. In the Notch signaling pathway Notch1 upon ligand binding partners with CSL (CBF1/RBP-Jκ in mammals) and Mastermind-like proteins for transcriptional regulation. This pathway interlinks with the Wnt pathway that involves proteins like β-catenin affecting the regulation of gene transcription. The interplay between Notch1 and these pathways is fundamental in determining outcomes in cell proliferation and differentiation emphasizing the interconnected nature of signaling networks.
Notch1 is associated with T-cell acute lymphoblastic leukemia and breast cancer. Altered Notch1 signaling often through gain-of-function mutations can drive oncogenesis by disrupting normal cell differentiation and promoting uncontrolled proliferation. In T-cell acute lymphoblastic leukemia aberrant activation of Notch1 leads to increased expression of target genes working closely with related proteins like c-Myc. In breast cancer dysregulation of Notch1 signaling may facilitate tumor growth and metastasis indicating its role as a therapeutic target.
We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.
In the unlikely event of one of our products not working as expected, you are covered by our product promise.
Full details and terms and conditions can be found here:
Terms & Conditions.
ab114178 on a 12.5% SDS-PAGE Stained with Coomassie Blue.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.
For licensing inquiries, please contact partnerships@abcam.com